Summer Reading: Three Articles for Your Consideration

Celebrating the end of the academic year and looking forward to some time for summer reading? It’s always good to have solid research to back up our teaching practices. Three recent articles highlight scholarship behind the claimed benefits of collaborative learning, improved student performance with the use of active learning, and taking notes by hand provides better cognitive retention than using a laptop.

Woman lying on grass reading a book.A tip from the Tomorrow’s Professor mailing list sent The Innovative Instructor to IDEA (Individual Development and Educational Assessment) and POD (Professional and Organizational Development Network in Higher Education). “IDEA is a nonprofit organization whose mission is to provide assessment and feedback systems to improve learning in higher education.” [http://ideaedu.org/about] As part of IDEA, POD produces “succinct papers” to address specific ways for instructors to employ innovative teaching methods. The POD Center Notes on Instruction is definitely worth a look.

POD Item #5 Formed “Teams” or “Discussion Groups” To Facilitate Learning Overall, reviews the research supporting the benefits of collaborative learning. “Learning is enhanced when the material to be learned is thought about deeply and also when related material is retrieved from memory and associated with the new material. When students have an opportunity to work together to learn course content, particularly when applying that material to a new challenge, both deep thinking and retrieval of associated materials are realized.” Specific tips are presented for implementing group work in a course, including setting clear expectations and monitoring group progress. Applications of group work for online settings are examined, and assessment issues are addressed.

Next, a study on lecturing versus active learning was recently highlighted in both Inside Higher Education and The Chronicle of Higher Education. The results of the research, Active Learning Increases Student Performance in Science, Engineering, and Mathematics, were published in the Proceedings of the National Academy of Sciences by Scott Freeman, Mary Wenderoth, Sarah Eddy, Miles McDonough, Nnadozie Okoroafor, Hannah Jordt, and Michelle Smith. The lead researchers are in the Department of Biology at the University of Washington, Seattle.

From the abstract: “This is the largest and most comprehensive meta-analysis of undergraduate STEM education published to date.” “These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning.” As for the significance of the report, “[t]he analysis supports theory claiming that calls to increase the number of students receiving STEM degrees could be answered, at least in part, by abandoning traditional lecturing in favor of active learning.”

From the April 2014 Psychological Science, The Pen is Mightier Than the Keyboard Advantages of Longhand Over Laptop Note Taking by Pam A. Mueller and Daniel M. Oppenheimer, reports on the benefits students gain by taking lecture notes longhand rather than on a laptop. Although using laptops in class is common (and instructors complain about the distractions laptops present), this study “…suggests that even when laptops are used solely to take notes, they may still be impairing learning because their use results in shallower processing.” “In three studies, [the researchers] found that students who took notes on laptops performed worse on conceptual questions than students who took notes longhand.” The authors conclude “…that whereas taking more notes can be beneficial, laptop note takers’ tendency to transcribe lectures verbatim rather than processing information and reframing it in their own words is detrimental to learning.”

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Image Source: CC Spirit Fire on Flickr: https://www.flickr.com/photos/spirit-fire/5733726521/

What is Gamification and Why Use It in Teaching?

A few weeks ago The Innovative Instructor had an inquiry from a reader who wanted to offer an online gamified Gothic art history class and was looking for models. Today’s post seeks to provide information on gamification, why you might want to consider using it in your teaching, and how to go about implementing gamification.

Gamification is defined as the application of typical elements of game playing (rules of play, point scoring, competition with others) to other areas of activity, specifically to engage users in problem solving. [Wikipedia and Oxford Online Dictionary] It has been used in marketing, but also has applications in education. In addition to promoting specific learning gains, games are a form of active learning. In some cases gamification includes the use of badges – think scouting merit badges in digital form – to promote learning and recognize competencies (e.g., Khan Academy has a badging system).

My own introduction to gamification came last October when I attended the annual Educause conference. One of the keynote speakers was Jane McGonigal who has a Ph.D from UC Berkeley and is a world renowned game developer.  Her 2012 TEDGlobal talk has had 4.5 million views, and her website is a great place to start learning about the value of games. “She points out that we like people better if we’ve played a game with them; we bond and build trust. And contrary to popular thinking, she explains that games are not so much a tool for escapism but rather a way to use our best selves. Gamers are extremely productive and collaborative within the realm of a game.”  [Friedman, Stan. “Finding the Future: Inside NYPL’s All-Night Scavenger Hunt.” Library Journal. July 13, 2011.]

It’s not all just fun. Games can be about finding solutions to serious problems as McGonigal states: “Many of my games challenge players to tackle real-world problems at a planetary-scale: hunger, poverty, climate change, or global peace, for example (see: EVOKE, World Without Oil, Superstruct).” [http://janemcgonigal.com/]

A search for scholarly articles on gamification [Google Scholar gamification in education] will get you to research on why gamification is an important teaching and learning strategy and how to incorporate gamification into your curricular planning. “In today’s digital generation gamification has become a popular tactic to encourage specific behaviours, and increase motivation and engagement. Though commonly found in marketing strategies, it is now being implemented in many educational programs as well, helping educators find the balance between achieving their objectives and catering to evolving student needs.” [Huang, Wendy Hsin-Yuan, and Dilip Soman. “Gamification Of Education.” 2013. p.5]

Huang and Soman define a five part process for applying gamification to the instructional environment.

Flow chart defining the steps to implementation of gamification in instruction.

The flow chart starts with knowing who your students are and where the course/training/instruction fits into the larger curricular framework. Context also refers to the type of instruction and where it will take place (individuals, groups, class size, face to face, online). Identification of “pain points” (factors that prevent learning advancement) will help the instructor define learning objectives and structure the placement of game elements in the curriculum. Then you can begin to identify resources – pre-existing games or ones that you will develop, which can range from complex to very simple. Finally, you will implement the gamification strategies.

Keep in mind that the objective is to gamify the process not the outcome. “Ben Leong, Assistant Professor at the School of Computing, National University of Singapore (NUS) states that there should be a clear understanding that gamification is independent of knowledge or skills. Gamification directly affects engagement and motivation and it indirectly leads to acquiring more knowledge and skills. Gamification encourages students to perform an action; for example, motivating students to practice computer programming will increase their skill and motivating students to memorize consistently can increase their knowledge.” [Huang and Soman. p. 15]

For many the big question will be “What games should I use?” There are a number of already developed, sophisticated games applicable to a variety of disciplines – STEM, humanities, social sciences – out there. For example, Entering the Education Arcade  [Jenkins, Henry, E. Klopfer, K. Squire, and P. Tan, “Entering the Education Arcade,” ACM Computers in Entertainment, Vol. 1, No. 1,
October 2003, Article 08] describes three games made by the Microsoft-MIT iCampus project, namely Supercharged!, Environmental Detectives, and Revolution. “Has education become nothing but fun and games? Not exactly. In each case, the games are being integrated into a range of other curricular activities. Games are enhancing traditional educational tools such as lectures, discussions, lab reports, homework, fieldtrips, tests, and textbooks. Games are being allowed to do what games do best, while other kinds of teaching support those lessons.” [Jenkins et al. p.2]

These links will take you to the games cited above and others developed by the MIT Education Arcade.

Also check out Games Learning Society, another developer of innovative educational video games, which “…promote engaging ways of learning about biological systems, civic activism, pro-social behavior, programming, and many other STEM domains.”

You don’t have to rely on existing video games, online simulations, coding your own games, or having students code in order to bring gamification to your teaching. Keep in mind that you are looking to identify a “pain point” and find a way to help your students learn that material. Role playing, research-oriented scavenger hunts, adapting classic television games or shows (e.g., Jeopardy, Who Wants to be a Millionaire?, Mission Impossible) to the classroom, are low-barrier methods to consider.  As this video demonstrates, it can be as simple as bringing buckets of ping pong balls to class. Here at Johns Hopkins, Professor of Biology Vince Hilser demonstrated the concept of equilibrium to students in an introductory biochemistry class by having them throw ping pong balls across the room. Specific rules, timed segments, and a spirit of competition fulfill the requirements for the activity to be a game.

Now, Innovative Instructor, your mission, should you choose to accept it, is to develop a game to help students conquer a learning obstacle in your class.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: Macie Hall adapted from Huang, Wendy Hsin-Yuan, and Dilip Soman. “Gamification Of Education.” 2013. p.7.