Lunch and Learn: Creating and Implementing Authentic Assignments

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Tuesday, October 15, the Center for Educational Resources (CER) hosted the first Lunch and Learn—Faculty Conversations on Teaching—for the 201-2018 academic year.  Sanchita Balachandran, Associate Director, the Johns Hopkins Archaeological Museum and Senior Lecturer, Department of Near Eastern Studies; and Sauleh Siddiqui, Assistant Professor, Civil Engineering presented on their experiences using authentic assignments.

As a preface, students often ask why they need to learn something, and wonder when, if ever, they will use course information. Authentic assignments give students “real-world” experience and context, and involve hands-on, active learning.

Students building a kiln for Sanchita Balachandran's Greek Vases course.Sanchita Balachandran is Associate Director and conservator of the JHU Archaeological Museum as well as a lecturer in the Department of Near Eastern Studies. The collection was started in 1882, just six years after the founding of the University, and now occupies a jewel-box of a space in the renovated Gilman Hall, where its collection is at long last appropriately displayed. Balachandran uses the museum collection and “teaches courses related to the identification and analysis of ancient manufacturing techniques of objects, as well as the history, ethics and practice of museum conservation and curation.” She’s long been interested in authentic learning, and has recently taught two courses that exemplify this method: Recreating Ancient Greek Ceramics and Roman Egyptian Mummy Portraits.  [See presentation slides.]

When designing authentic learning assignments Balachandran asks herself a series of questions.

  1. Is this a question I am genuinely curious about and don’t know the answer to? With the course on recreating Greek ceramics she had long wondered how these objects were made (a subject of speculation and debate but no definitive answers). For both Balachandran and her students, it was both “exhilarating and terrifying” to not know what the end results would be. They would be discovering the answers together and this was motivating for the students.
  2. Is the question big enough, and are the stakes high? For her course on Roman Egyptian mummy portraits (Freshman Seminar: Technical Research on Archaeological Objects in the Johns Hopkins Archaeological Museum) the primary goal was to generate and collect technical data on these ancient portraits for contribution to an international data base. Other collaborators included the J. Paul Getty Museum, the British Museum, the Boston Museum of Fine Arts, the Walters Art Museum and the Art Institute of Chicago. The students were working with “big players” in the museum world.
  3. Do I have a physical thing that can be the focus of sustained and weekly examination and research? In both courses museum artifacts provided a focus point for the students.
  4. What methodology am I trying to teach? Balachandran’s methodology involved working hands-on with museum objects, consulting with experts and specialists in the field, documenting through writing, photography, and film the processes, and sharing observations and reflections with a broad audience. She noted that it was important that students experience moments of confusion during the process as it teaches them to think critically about, for example, past research, and what applies and doesn’t.
  5. What kind of expertise is need and who has it and will help? Balachandran spends a great deal of time in advance of her courses identifying relevant resources. She noted the value of Skype for bringing subject matter experts and specialists into the classroom from around the world.
  6. Is my class of students disciplinarily diverse? Balachandran advertises her courses broadly. Museum work often involves material scientists, for example. Her Greek vase course had students from materials science, applied mathematics, and biomedical engineering as well as the humanities and social sciences.
  7. Is the class work challenging and is there a hands on component? In each of the courses, Balachandran had students working with the materials that were used in the creation of the original art objects. The students made vases from clay using the techniques known to have been used in Ancient Greece; in the portrait course, they painted with encaustic, the material used by Roman Egyptians. She stressed that this was more than an arts and crafts session. Students studied the material science behind the techniques that were used and gained an appreciation for how the works were created.
  8. Is there an enduring “deliverable” or a regular public component to the class? Students contributed to the international data base in the mummy portraits class and blogged regularly as a part of the Greek vases class. Balachandran used social media (Facebook) to publicize student work. There was also a documentary film—Mysteries of the Kylix—made during the class that has been viewed over 4000 times. She arranged for radio spots on WYPR (Baltimore’s NPR station) and gained exposure through Johns Hopkins publications and the Baltimore Sun newspaper.
  9. Do I see my students as collaborators? Balachandran makes sure that students are given credit in the public components of the course and regularly acknowledges their participation. She sees herself as in the trenches with the students, finding answers to problems together.
  10. Am I ready not to be in control of what we find out? This is perhaps the most difficult step for an instructor to take with authentic assignments, but the one that will allow for the real learning gains. We learn from our failures as well as successes, and that is important for students to experience firsthand.

In conclusion, Balachandran summarized what students learned during her courses:

  • Everything is more complicated than we think and merits repeated examination/re-examination
  • Our work in the classroom produces unique specialized knowledge
  • We can participate in and contribute to scholarly conversations
  • We should broaden our own knowledge base and collaborate beyond our usual networks
  • We must provide access to the knowledge we produce
  • The process of trying to answer a question is more important than answering the question—and will lead to more interesting questions
  • We can/must ask more daring questions.

Siddiqui discussed the main components of authentic learning assignments as he uses them in his courses with the most important being that students should be doing rather than listening. [See presentation slides.] These are:

  • The judgment to distinguish reliable from unreliable information.
  • The patience to follow longer arguments.
  • The synthetic ability to recognize relevant patterns in unfamiliar contexts.
  • The flexibility to work across disciplinary and cultural boundaries to generate innovative solutions.

Example of problem involving transportation networks by Sauleh Siddiqui.In his course, Equilibrium Models in Systems Engineering, students work on real-life examples such as designing transportation networks. To demonstrate an exercise that Siddiqui uses in his course, he passed out clickers to the audience, as his students would use. He then set up a problem involving getting from Washington, DC to Baltimore, MD using a combination of driving and taking a train, with two possible routes. Driving time on each route will vary depending on the number of cars on the road. The model is set for the number of participants/students in the group—if there are 28 participants driving on the same route, the driving part of the trip will take 28 minutes. If there are 5 participants driving on the route, it will take 5 minutes. The train trip is static and takes 30 minutes on each route. Using their clickers, participants vote on a route, A or B. Siddiqui then show the histogram of the vote, and participants can change their vote based on the road time component. As participants change votes, the driving time will increase or decrease on each choice. Voting continues until eventually a state of equilibrium is reached and the driving time on the two routes is equal.

Siddiqui then throws in another component. What happens if you add another variable, a new road? Participants can now vote for three options. Ultimately his students will see (as did the participants at the Lunch and Learn) that sometimes a third option can worsen the situation rather than improve it.

In his classes, students work with actual examples taken from New York City, Germany, South Korea, and other places, to examine the factors that went into the design process, and analyze what went wrong. Siddiqui feels that engineers are not necessarily taught to work with real-life situations and this can lead to poor design. Engineers need to understand the factors that impact actual human decision making in order to build successful solutions.

In the discussion period that followed the presentation, Balachandran and Siddiqui agreed that students are motivated by working with real-life problems. Siddiqui noted that his students still had to “slog through” doing the mathematics behind the exercises, but valued understanding both sides.

In discussing how to gauge whether an assignment or project was too big or too small, it was agreed that it is important to scaffold larger projects, build support structures, and allow for flexibility. It was acknowledged that students will struggle with ambiguity. It is important with authentic assignments to be clear that the goal is not so much to find an answer as to go through a process.

Both presenters agreed that setting up these authentic learning experiences—assignments, projects, and courses, can be time consuming and challenging. But, for both, the benefits for students have been substantial and they will continue to explore the possibilities for future classes.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Sources: Lunch and Learn Logo, slides from Balachandran and Siddiqui presentations

Faculty Office Hours: The Instructor is In

Peanuts comic showing Lucy in the psychiatrist's booth, re-labelled to say "Course Help Free; The Instructor is In."What if you hold office hours and nobody comes? That’s the issue that Dr. Richard Freishtat, Director of the Center for Teaching and Learning at UC Berkeley addresses in Don’t Be Alone During Office Hours (Tomorrow’s Professor, January 10, 2017). He describes a student panel at Berkeley on facilitating student success. When the student panelists were asked by a faculty member about attending office hours, there was silence. Why was this opportunity not being pursued? One student responded, “Reason #1: ‘I think office hours is for students who are struggling with the material and need extra help. I wouldn’t want my professor to know I’m struggling, even if I was.’ Reason #2: ‘I was fascinated by the Professor, the discipline, and research in the field beyond what we were focusing on in class. I would have loved to drop into office hours and just talk with my professor about her own research, but figured there’s no way she’d want to take the time to do that with me.’” Faculty in the audience expressed just how much they would appreciate students coming to see them for the latter reason.

Freishtat goes on to suggest some ways to increase student attendance at office hours including making it an assignment, telling students how to use/what the purpose is of office hours, explaining to students how to start an office hours conversations (bring a question, a quote of interest, a story), scheduling varying days and times to accommodate different schedules, and promoting office hours throughout the semester/quarter.

For more on practical measures to take to improve the participation and outcome of your office hours, see the Stanford Teaching Commons website on Office Hours That Work and the University of Washington Center for Teaching and Learning on Face to Face Office Hours.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: CC Image from Flickr [https://www.flickr.com/photos/frederickhomesforsale/16107671226] modified by Macie Hall

Lunch and Learn: Using Videos in Your Course

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Friday, April 21, the Center for Educational Resources (CER) hosted the fourth and final Lunch and Learn—Faculty Conversations on Teaching—for the 2016-1017 academic year. Jane Greco, Associate Teaching Professor Chemistry and Alison Papadakis, Associate Teaching Professor Psychological and Brain Sciences, presented on “Using Videos in Your Course.”

Papadakis presented first (see slides). She teaches the introduction to abnormal psychology course, where students learn about symptoms, causes, and treatment of common psychological disorders, and an upper level course that expands on this content. Although she has wrestled with using videos in that they might be seen as entertainment, she likes the fact that they have the advantage of grabbing and focusing student attention. Studies have shown that student attentiveness drops off after about 15 minutes of lecture time, so well-timed videos can provide a way to bring them back to task. Papadakis noted that carefully selected video content can help bring dry or complicated content to life, foster discussion, challenge students to apply concepts to practice, build empathy, and set the mood. In her upper level course, she uses videos showing psychotherapists in practice, pausing the videos at strategic points to ask students what they would do next in the particular situation.

Papadakis offered several examples of her use. The first, a clip from The Office, is used to help students understand the concept of classical conditioning. She explains the concept first, shows the video, then tests the students understanding of the concept using clickers. The class then discusses the complexities of applying the concept.

In a second example, Papadakis showed videos of an OCD patient and her treatment.Graphic images showing an illustration of a film strip, projector and reel. As these videos are from a textbook publisher’s DVD, they can’t be shared here. Such videos bring complex phenomena to life, provide insight and build empathy, help the instructor test understanding of concepts, and foster discussion. Papadakis had another example, showing the hallucinations common to schizophrenia, that she uses in a similar way—to help deepen student understanding and learning of a complex disorder.

A final example showed how she used a video of students rapping about the value of learning statistic analysis relevant to analyzing data in her discipline to set the mood, make learning fun, and decrease students anxiety.

Papadakis discussed issues to consider when deciding to use videos in the classroom. Start with your pedagogical goals. Make sure the video connects to these in a meaningful way. Provide context before viewing. If the video is long, interrupt and debrief at strategic points. Use short videos or clips, extracting the minimum that you need to get the point across. Pair video viewing with other teaching techniques to increase student reflection on the content (clickers, think-pair-share exercises, minute papers, discussion). Fair use may also be a consideration and a useful resource is the Columbia University Copyright Advisory Office’s Fair Use Checklist. She also suggested sources for videos such as YouTube, textbook publishers, the library’s video database subscriptions, news websites, PBS documentaries, professional organizations websites and Facebook feeds, and even Google video searches.

If you use presentation slides in your teaching, embedding the video clips is advised. If you share your slides with students, the file size will be very large with the videos embedded, so consider removing them and providing access to the clips by linking or other means. Be aware of accessibility issues and make sure the videos are closed captioned.

While Jane Greco (see slides) also uses videos in her teaching she has a different approach. She uses videos created by others to demonstrate chemical reactions caused by materials considered too dangerous for use in undergraduate labs, and to bring experts in the field, who wouldn’t normally be available to speak to her students, into the classroom via readily available taped interviews or talks. But she also has her students produce videos, both through grant-funded projects to provide course-related content, and as student assignments.

In speaking of producing video to convey content, Greco said that instructors should balance the advantages of making your own—they are specific to your equipment and your method of teaching a topic, versus using available videos, which often have better production quality and offer a less time-intensive way to approach the topic. Questions to ask are 1) How much time to you want to put into production quality? 2) Where/How will you share your video content? (YouTube channel, Course Management System, video streaming service) 3) Who can help you with the videos and is there funding available? Greco made use of the Technology Fellowship Grants offered by the Center for Educational Resources, and CER expertise and equipment.

The first CER-funded project produced animations to help students understand complex chemical concepts, such as this one explaining Column Chromatography.  YESYOUCHEM was another project funded by a Technology Fellow Grant. The videos produced by student fellows can be found on both the YESYOUCHEM website and a Johns Hopkins YouTube channel. They include main concept videos, supplemental problems, and extended interviews with Hopkins faculty in relevant fields. One lesson she learned from having students produce videos for course work was to be sure that they have the requisite experience, and that a platform for sharing and guidelines for production (branding, credits) be specified by the instructor. For YESYOUCHEM she chose students whose work she had seen in a student project.

Film still from a student-produced lab safety video showing the singing protagonist as he discusses proper lab clothing. He is wearing a white lab goad and safety googles.Greco assigns a creative group project to students in her lab. Although the project has a relatively small point value, it allows students to delve into a single topic and show their understanding outside of a testing environment, and it gives students an opportunity to use their other amazing creative talents. Videos are just one of many options the students can choose for the project, in the past there have been craft projects, dance performances, and other imaginative and inspired demonstrations of chemistry topics. She provides a list of suggested topics, but students can go off list with approval. Greco makes it clear that she expects chemistry content not just chemistry words. She also explains the limitations of group work. Different group members will contribute differently to the project, but there is just one grade assigned even if the group work was uneven. It is difficult to create an all-encompassing rubric for grading when the projects range widely in the platform chosen. She lets students know that grading might not be as quite as objective as for a test or exam. However, the assignment has been successful, students enjoy it and produce amazing projects. Here are links to two of the video projects produced by student groups in the course:

Students may choose to have their videos made public or kept private. Greco posts public videos for future classes to view.

In the discussion that followed, it was clear that faculty are eager to try the approaches that Papadakis and Greco presented—use of existing course-related content given context within a lecture or discussion, development of course-specific video content, and assigning students a project to produce videos.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Pixabay.com, video still from I Just Had Lab https://www.youtube.com/watch?v=enFFIK2Mhzw

 

 

 

Flipping a Statistical Analysis Course

I wanted to share my reflections on flipping a course in Fall 2015 with my colleague, Dan Naiman, Professor of Applied Mathematics and Statistics at Johns Hopkins University. The course is 550.111: Statistical Analysis I. Previously, this 4-credit course met four time per week for 50 minutes – three lectures by faculty and one small-group meeting led by a Teaching Assistant (TA).

Text reading flipping the classroom with the classroom upside downStarting in Fall 2015, students watched several short videos (anywhere from 5 to around 20 minutes each) before the week started. Students then met once for a 75-minute lecture with the instructor and twice in small-groups with a TA. During these sessions students solved problems in teams of three with a TA available for help as needed.

In Fall 2016, we amended the format slightly: students met in a large lecture twice a week, on Mondays and Fridays, and met in discussion sections twice a week, on Tuesdays and Thursdays. This was in response to feedback from students indicating that they preferred a bit of additional face-to-face meeting time with the instructor. The Monday-Friday lecture times also made homework submission and certain aspects of course planning (such as exams) easier to handle.

We made this change because we wanted students to spend more time in small groups solving problems and engaged in activities, as opposed to simply listening to a lecture.

What did we learn? I would strongly advise those interested in flipping a class to keep the videos short. They should be about five minutes each. This allows each video to cover a discrete topic, and it’s about as long as students will watch in one session. Recording shorter videos is easier on the instructor as well. The video production took longer than I expected. For each video, Dan and I would first construct a slideshow, and then we would record it using the software program Camtasia. My colleague, Dan, did an excellent job with video production, and we generated significant video content before the start of the semester. I would also advise instructors to complete all video production before the start of the semester; we still had a few videos to produce during the semester, and this was a challenge. I found I was pressed to finish those additional videos in time. We plan to revisit, edit, and potentially add more videos before the next course offering. Specifically, we are considering animations and possible hand-written solutions.

We conducted clicker quizzes at the beginning of each lecture to motivate students to watch the videos. However, based on the video logs, quiz results, and the questions they asked, I found a number of students were not fully prepared. Their questions were on topics covered in the videos. I would estimate that in Fall 2015, until the first exam, a number of students did not pay sufficient attention to the videos. However, after the first exam, students began watching the videos more diligently.

One reason we flipped the course was to restructure class time so that students could spend more time in mentored environments working in small groups solving problems. As it turned out, though, students requested more lecture than the once-weekly format. Students struggled to grasp some concepts from the videos. While students can review these topics multiple times, I believe they sometimes needed an alternative explanation. In a lecture, when students ask questions, I try to respond with a different perspective or explanation. With the flipped model in Fall 2015, students had only one class meeting each week to ask me questions about the homework. The second time we ran the course, in Fall 2016, we had two lectures each week, and I think students appreciated the additional lecture time.

I really enjoy teaching this course. It’s a lot of fun and a great privilege. Many non-majors enroll, and humanities undergrads have shared that this was the first math course they enjoyed and they were impressed with the applicability and universality of statistics. The class typically enrolls about 100 students.  Even with this large number I am able to learn most of their names by the end of the semester when we met three times per week. I did feel, though, that I was not able to get to know students as well when we met once per week. More important, I think the once-weekly lecture deterred students from coming to see me during office hours: I noticed a sharp decrease in the number of students who consulted me during office hours in Fall 2015. In Fall 2016, under the twice-weekly lecture model, I had better office hour attendance and was better able to get to know students.

While we were happy with the increase in the number of lectures, I think it’s important that we not decrease the number of small group meetings. The worksheet activities were important for their learning. Students were not always as enthusiastic about the small group problem solving, but they adjusted to the format and things improved as the semester moved forward. Furthermore, we still found it better than a TA solving demo problems for the class, especially in terms of class engagement and in terms of fostering independent problem-solving.

We used two types of problems in the course. The first required more synthesis-based understanding of previous topics. We began to develop more basic, conceptual worksheets once we saw students were not always able to keep up with the videos.

We did not give students the solutions to the worksheets. We worried that if we provided full solutions, they might be less motivated to work through challenging problems and/or skip discussion section altogether, and participation in section was important. Students did get feedback from the TA when they presented their solutions in class, and we did provide solutions to most assigned homework problems.

Overall, we did not see a dramatic change in student learning. We did not conduct a controlled study of learning gains, but exam scores were not much different from year-to-year. Course evaluations for the one-lecture-per-week format were slightly lower. (Again, the main complaint was that students wanted more time with faculty member in lecture.) Students were happier with the two-lecture-per-week format we implemented in Fall 2016. Therefore, we plan to stick with this format, meeting four times per week so students attend two lectures and two small-group sessions per week. We have also been more explicit about the role of each component of the course – videos, lecture, clicker quizzes, small group meetings – and what students are responsible for completing and when.

Most of all, we were very lucky to experiment with this approach with many terrific TAs—we owe them a real debt of gratitude for their assistance. We gratefully acknowledge support from the Office of the Provost and President for a PILOT grant that assisted us in implementing the flipped course.

 

Avanti Athreya is an Assistant Research Professor in Applied Mathematics and Statistics (AMS) at Johns Hopkins University. Prior to flipping the statistics course, she and Professors Naiman, Fishkind, Torcaso, and Jedynak (all AMS faculty) implemented a case-study based approach to introductory statistics as a part of the JHU Gateway Sciences Initiative. Her research interests are in probability and statistical inference on random graphs.

Dan Naiman has been on the faculty in Applied Mathematics and Statistics since 1982. Upon arrival at JHU, he taught Statistical Analysis I for 3 consecutive years, and has continued to teach the course occasionally, as well as a host of other statistics courses at all levels, since then.

Image Source: CC Macie Hall 2013

 

Using Classroom Simulations as an Active Learning Technique

College educators have many goals for students; we want them to acquire more knowledge and be better critical thinkers, but also to feel empowered and energized about their future contribution to society. Students that are motivated and ambitious are more likely to pursue personal opportunities and inventive ideas. This type of energy and focus also contributes to the problem-solving capacity of society as a whole. Although a positive attitude often comes from within the student or outside the classroom, the structure of learning also has an impact.

For the global environmental politics classroom, the problem of student attitudes is especially acute: students of global environmental governance are particularly prone to negative emotional reactions, including feelings of helplessness and hopelessness, which can engender apathy and cynicism.  Students come to believe that the complexity and depth of problems like climate change make effective action impossible. Students who do not believe a problem can be solved are unlikely to seek solutions to that problem in their post-college careers. Using active learning techniques like Simulations can combat these attitudes, by giving students the opportunity to collectively investigate and tackle barriers to international action.

I designed a Simulation for the last week of my fall 2017 “Politics of the Ocean” class, because I noticed that the students often left class in despair. Solutions to over-fishing, Model United Nations simulation with students sitting at tables with flags of the represented countries.plastic pollution, dead zones, ocean acidification, coral bleaching, and other ocean issues seemed out of reach because of political and economic barriers. The number and complexity of ocean issues seemed overwhelming. And yet, we knew that the United Nations was gearing up to negotiate a new treaty to govern the high seas. This provided me with the opportunity to design a politics Simulation that hewed as close to the real world as possible, where students could practice negotiating a treaty that addressed many of the problems they had learned about in class.

The basic features of the course dictated the options for Simulation design – I had 15 students, and we met twice a week for a total of 2.5 hours. I started by assigning students to polity teams in the week before the Simulation began. I choose countries that have had the most influence on ocean governance historically, and groups that would likely have influence in the upcoming negotiations: The United States, China, Russia, the G77 coalition, Singapore, and NGOs. I asked students to do the assigned readings for the next week – each of which contained a specific proposal for ocean governance – with their team in mind.

The Simulation was divided into two days. On day one, students worked within their teams to answer a series of questions like “Who are the primary ocean interest groups in your country?” “What are your priorities for ocean governance?” and “What treaty design best serves your interests?” Students were instructed to work with their teammates, and to do supplementary in-class research to help flesh out their positions. Some teams had specific questions: the NGOs had to decide which NGOs to represent, and the China team had to decide whether to negotiate with the G77, or on its own. The Singapore team had additional questions about how the negotiations ought to be run, because of Singapore’s historic role as a leader in organizing past Law of the Sea negotiations.

On day two, students entered the classroom to discover groups of tables designated with small flags. Singapore ran the negotiations while I took notes, with some minor interventions. Each team started with an opening statement about their key interests and main concerns, with short rebuttals following. Then Singapore asked each team to submit a list of priority topics, and chose the top four. While the original plan was to address each in turn through speeches and open discussion, the students ended up deciding to address all the issues simultaneously. In the last ten minutes, Singapore collected specific treaty language proposals. Each of six new rules was voted on individually, and those that with a majority of teams affirming became the agreed upon treaty.

I designed this Simulation to achieve attitudinal goals in three ways. First, role playing required students to formulate prescriptions from the descriptions of ocean problems and governance models they had learned about in class. The idea is that practicing advocacy will help students recognize that they have informed opinions about ocean issues, and see themselves as agents of change. Second, the format shows students that complexity is not the same as intractability. The two-day design allows group work to break down the structure of a collective action problem, construct a policy agenda and negotiation strategy, and consider various policy models described in the literature. Third, the negotiations allow students to directly encounter barriers to consensus formation, instead of speculating about everything that could hold up an agreement. Confronting obstacles to agreement this way may illustrate the utility of issue-linkages, and demonstrate that there are coalitions willing to move forward.

I assessed the achievement of attitudinal learning outcomes using a short pre- and post-Simulation survey, which asked students to rate their level of agreement with statements like “All relevant parties can get what they want from the oceans” and “The situation in the high seas is too complicated for effective management.” The survey also asked students to rank the importance of different barriers to an international treaty, like “political will” and “public education.” The final questions were open-ended, and asked students to use one word to describe the situation in the ocean, and also how they feel about it. While the survey results showed a slight improvement in optimism, I was surprised by the fact that students started out more optimistic than I expected.

The biggest mistake I made in the design of this Simulation was asking the Singapore team to take a leadership role by designing the basic structure of the negotiations, and leading the class on day two. Although I chose two students with obvious leadership qualities, they found it difficult to command authority among the teams, and to push for efficiency in negotiations. They also seemed displeased that they had a “special” role, and more interested in participating as a regular team. Most of the students reported wanting to start the Simulation earlier in the semester, so they could have more time getting into the details of constructing a workable solution to collective problems in the ocean.

This type of Simulation is relatively easy to design and implement, and there exists a broad literature relating game design to specific cognitive and attitudinal goals. Even though this Simulation was imperfect, students reported on their course evaluations that they appreciated doing something different, and having the chance to work through obstacles to consensus as a group. And because this type of Simulation can be used with a larger class size (just add more teams), I know that the lessons from this class can be used to improve the Simulation for the future.

Elizabeth Mendenall, PhD candidate, Johns Hopkins University

Elizabeth Mendenhall is a PhD candidate in International Relations. Her dissertation concerns obstacles to effective governance in the global commons, specifically the ocean, atmosphere, and outer space. She will be starting as an assistant professor at the University of Rhode Island in the Fall of 2017.

Image source: Wikimedia Commons

 

 

 

 

 

 

 

Lunch and Learn: Team-Based Learning

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Friday, December 16, the Center for Educational Resources (CER) hosted the second Lunch and Learn—Faculty Conversations on Teaching, for the 2016-1017 academic year. Eileen Haase, Senior Lecturer in Biomedical Engineering, and Mike Reese, Director, Center for Educational Resources, and Instructor in Sociology, discussed their approaches to team-based learning (TBL).

Eileen Haase teaches a number of core courses in Biomedical Engineering at the Whiting School of Engineering, including Freshmen Modeling and Design, BME Teaching Practicum, Molecules and Cells, and System Bioengineering Lab I and II, as well as being course director for Cell and Tissue Engineering and assisting with System Bioengineering II. She has long been a proponent of team work in the classroom.

In her presentation, Haase focused on the Molecules and Cells course, required for BME majors in the sophomore year, which she co-teaches with Harry Goldberg, Assistant Dean at the School of Medicine, Director of Academic Computing and faculty member, Department of Biomedical Engineering. The slides from Haase’s presentation are available here.

In the first class, Haase has the students do a short exercise that demonstrates the value of teamwork. Then the students take the VARK Questionnaire. VARK stands for Visual Aural Read/Write Kinesthetic and is a guide to learning styles. The questionnaire helps students and instructors by suggesting strategies for teaching and learning that align with these different styles. Haase and Goldberg found that 62% of their students were “multimodal” learners who will benefit from having the same material presented in several modes in order to learn it. In Haase’s class, in addition to group work, students work at the blackboard, use clickers, have access to online materials, participate in think-pair-share exercises, and get some content explained in lecture form.

Team work takes place in sections most FridSlide from Eileen Haase's presentation on Team-based Learning showing a scratch card test.ays. At the start of class, students take an individual, 10 question quiz called the iRAT, Individual Readiness Assurance Test, which consists of multiple-choice questions based on pre-class assigned materials. The students then take the test as a group (gRAT). Haase uses IF-AT scratch cards for these quizzes. Both tests count towards the students’ grades.

To provide evidence for the efficacy of team-based learning, Haase and Goldberg retested students from their course five months after the original final exam (99 of the 137 students enrolled in the course were retested). The data showed that students scored significantly better on the final exam on material that had been taught using team-based learning strategies and on the retest, retained significantly more of the TBL taught material. [See Haase’s presentation slides for details.]

Slide from Mike Reese's presentation on Team-based Learning showing four students doing data collection at a Baltimore neighborhood market.Mike Reese, Director of the Center for Educational Resources and instructor in the Department of Sociology, presented on his experiences with team-based learning in courses that included community-based learning in Baltimore City neighborhoods [presentation slides]. His courses are typically small and discussion oriented. Students read papers on urban issues and, in class, discuss these and develop research methodologies for gathering data in the field. Students are divided into teams, and Reese accompanies each team as they go out into neighborhoods to gather data by talking to people on the street and making observations on their surroundings. The students then do group presentations on their field work and write individual papers. Reese says that team work is hard, but students realize that they could not collect and analyze data in such a short time-frame without a group effort.

Reese noted that learning is a social process. We are social beings, and while many students dislike group projects, they will learn and retain more (as Haase and Goldberg demonstrated). This is not automatic. Instructors need to be thoughtful about structuring team work in their courses. The emotional climate created by the teacher is important. Reese shared a list of things to consider when designing a course that will incorporate team-based learning.

  1. Purpose: Why are you doing it? For Reese, teamwork is a skill that students should acquire, but primarily it serves his learning objectives.  If students are going to conduct a mini-research project in a short amount of time, they need multiple people working collectively to help with data collection and analysis.
  2. Group Size: This depends on the context and the course, but experts agree that having three to five students in a group is best to prevent slacking by team members.
  3. Roles: Reese finds that assigning roles works well as students don’t necessarily come into the course with strong project management skills, and projects typically require a division of labor. It was suggested that assigning roles is essential to the concept of true team-based learning as opposed to group work.
  4. Formation: One key to teamwork success is having the instructor assign students to groups rather than allowing them to self-select. [Research supports this. See Fiechtner, S. B., & Davis, E. A. (1985). Why some groups fail: A survey of students’ experiences with learning groups. The Organizational Behavior Teaching Review, 9(4), 75-88.] In Reese’s experience assigning students to groups helps them to build social capital and relationships at the institution beyond their current group of friends.
  5. Diversity: It is important not to isolate at-risk minorities. See: Heller, P. and Hollabaugh, M. (1992). Teaching problem solving through cooperative grouping. American Journal of Physics, 60 (7), 637-644.
  6. Ice Breakers: The use of ice breakers can help establish healthy team relationships. Have students create a team name, for example, to promote an identity within the group.
  7. Contracts: Having a contract for teamwork is a good idea. In the contract, students agree to support each other and commit to doing their share of the work. Students can create contracts themselves, but it is best if the instructor provides structured questions to guide them.
  8. Persistence: Consider the purpose of having groups and how long they will last. Depending on learning goals, teams may work together over an entire semester, or reform after each course module is completed.
  9. Check-ins: It is important to check in with teams on a regular basis, especially if the team is working together over an entire semester, to make sure that the group hasn’t developed problems and become dysfunctional.
  10. Peer Evaluation: Using peer evaluation keeps a check on the students to ensure that everyone is doing a fair share of the work. The instructor can develop a rubric, or have students work together to create one. Evaluation should be on specific tasks. Ratings should be anonymous (to the students, not the instructor) to ensure honest evaluation, and students should also self-evaluate.

In the discussion that followed the presentation, mentoring of teams and peer assessment were key topics. Several faculty with experience working with team-based learning recommended providing support systems in the form of mentors and or coaches who are assigned to the groups. These could be teaching assistants or undergraduate assistants who have previously taken the course. Resources for team-based learning were mentioned. CATME, “which stands for ‘Comprehensive Assessment of Team Member Effectiveness,’ is a free set of tools designed to help instructors manage group work and team assignments more effectively.”

Doodle was suggested as another tool for scheduling collaborative work. Many are familiar with the Doodle poll concept, but there are also free tools such as Connect Calendars and Meet Me that can be used by students.

An Innovative Instructor print article, Making Group Projects Work by Pam Sheff and Leslie Kendrick, Center for Leadership Education,  August 2012, covers many aspects of successful teamwork.

Another resource of interest is a scholarly article by Barbara Oakley and Richard Felder, Turning Student Groups into Effective Teams [Oakley, B., Felder, R.M., Brent, R., Elhajj, I. Journal of student centered learning, 2004]. “This paper is a guide to the effective design and management of team assignments in a college classroom where little class time is available for instruction on teaming skills. Topics discussed include forming teams, helping them become effective, and using peer ratings to adjust team grades for individual performance. A Frequently Asked Questions section offers suggestions for dealing with several problems that commonly arise with student teams, and forms and handouts are provided to assist in team formation and management.

If you are an instructor on the Homewood campus, staff in the Centerfor Educational Resources will be happy to talk with you about team-based learning and your courses.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Sources: Lunch and Learn logo by Reid Sczerba, presentation slides by Eileen Haase and Mike Reese

Tweeting the Iliad

Two years ago I wrote a post on Using Twitter in Your Course that described how Margaret Rubega, Associate Professor in the Department of Ecology and Evolutionary Biology at the University of Connecticut with a PhD in ornithology, had used Twitter to promote active learning in a large lecture course. The post also provides some basics on how Twitter works for those unfamiliar with the social networking application. Recently, a colleague, gave me a link to an example of a faculty member using Twitter in a humanities course.

Twitter Logo Blue BirdSjoerd Levelt teaches at Bilkent University, in Ankara, Turkey in the program Cultures, Civilizations and Ideas, a year-long intensive course focusing on the meaning of culture. At Bilkent, instruction is in English. Levelt’s students are from diverse backgrounds and departments “…including computer sciences, mechanical, electrical and industrial engineering, law, archaeology, and management.” Levelt has a blog, and recently he posted on a course he is teaching on ancient and classical civilizations, covering texts ranging from the Epic of Gilgamesh to Plato’s Republic. The blog post, #Iliad, discusses the challenges he faced in teaching this text (The Iliad) and how having his students use tweeting, provided a solution.

Levelt writes: “The Iliad is not an easy text to read. Robert Fagles’ translation is not an easy translation to read. This would be true for most students (actually, most readers); and my students are further disadvantaged in that for the vast majority of them, English is not their native language, and many of them, they don’t read (or even like reading) literature all that much to begin with.” He wanted to “… explore with my students how we can engage with the classical text through various media…”.

First he had students look at other examples of how tweeting had been used to comment on literary works. Then he asked them to discuss how and why tweeting was effective in these cases. Students recognized that tweeting provides summary, explanation, commentary, and humor, among other things. In fact, reading with the idea that one will need to summarize, comment, and explicate the text in short sentences, forces students to read closely in order to grasp complexity and subtlety.

Levelt did not require the students to set up Twitter accounts. Instead he had them tweet on prepared “tweet sheets” that replicated the look of a Tweet. The assignment was structured; students were assigned to tweet as one of the characters in Book 3 (the focus of the assignment).

#Iliad, Book Three
Write “tweets” –on paper!– describing (a selection of) the narrative of book 3, from the perspective of the person whose identity you have been handed in class:
Paris (@FoolForLove)
Menelaus (@BattleHungry)
Helen (@TooPretty)
The Achaeans (@NotAHorse)
The Trojans (@HorseBreakers)
Use all 6 “tweets” of your handout to give your version of Book 3. Each tweet: maximum 140 characters. Bonus for creative use of hashtags and @mentions. Perspective: think, for example, of what your character can know, what they would find important, how they would view certain actions and events, what kind of language they would use.

After the students had completed the assignment, he had them come together in groups in class based on their characters (all the Helens, all the Trojans, etc.). The groups selected tweets from the combined sheets to share. Levelt then, with the permission of the students, shared their tweets on his Twitter account. He teaches three sections of the course, so there are three classes represented. These are their tweets: Class 1, Class 2, Class 3.

Levelt writes: “I was very impressed with the range and variety of aspects of the text reflected in my students’ tweets – from Helen’s conflicted internal monologues to Menelaus’ asking the troupes for retweets, and from a baffled Menelaus wondering what just happened after Paris disappeared to Helen’s shocked ‘selfie’ watching the battlefield, there are many very interesting readings of the text, and very few poor ones. Many of the tweets also provided opportunity for further discussion in class.” Moreover, students commented that the assignment made them look at the text with fresh eyes and engage with it based on their own experiences, leading to reading in a way that they had not done before.

This is an innovative use of social media to stimulate student engagement and higher level learning. Please share in the comments section examples you might have of similar assignments.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Twitter blue logo https://about.twitter.com/press/brand-assets

Lunch and Learn: Alternatives to the Research Paper

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Friday, April 1, the Center for Educational Resources (CER) hosted the fifth Lunch and Learn—Faculty Conversations on Teaching, the final event in the program for this academic year. Bill Leslie, Professor, History of Science, and Adam Sheingate, Associate Professor and Chair, Political Science, presented on Alternatives to the Research Paper.

Bill Leslie, who has been at Hopkins since 1981, teaches a number of different undergraduate and graduate courses. He has long been a proponent of finding alternate methods for students to present the results of their research. He pointed out that the key components for traditional humanities courses are to have students working with primary and secondary resources, analyzing their findings, thinking critically about the meaning, and using succinct, precise writing to convey the results. While a research paper is a long-established format for output of this work, there are many other ways for students to learn and practice these key skills.

Leslie mentioned specifically his course taught some years ago, “Monuments and Memory,” a study of the great monuments of Western culture, where as a final assignment, students created either real or virtual models of an imagined monument. Another example cited was “Science on Display,” a history of popular science examined through the study of exhibits in museums, botanical gardens, and science centers. In this course students created their own museums on a subject of interest to them and designed an exhibit that would be found in that museum.  The course used a web-based application developed by the Center for Educational Resources (CER) called the Interactive Map Tool, where the students could easily create web pages to showcase their museum exhibits. A new version of the Map Tool, called Reveal, has been used by Leslie more recently for student assignments in the course “Science and the City,” co-taught with Robert Kargon and Joris Mercelis, both faculty in the History of Science department.

Screenshot from Google Site for the course project “Johns Hopkins: An Idea of a University,” Home Page with Google Map.Currently Leslie is writing a history of Johns Hopkins University, a subject that brings together many of his scholarly interests. As part of this work he has offered a series of courses for undergraduates that draw from his research. For one course he had students write new or edit existing Wikipedia entries pertaining to Johns Hopkins [see: Wikipedia editing tutorial for a guide]. Students learned about responsible research, editing, and engaged in dialog with other Wikipedia editors. The history function of the wiki allowed Leslie to see exactly what changes the students had made and when. This proved to be of value in grading the students on their work.

ThisScreenshot from Google Site for the course project “Johns Hopkins: An Idea of a University,” showing page on the Abel Wolman House. spring Leslie is offering a course called “Johns Hopkins: An Idea of a University.” With a small grant from the CER, Leslie is looking to teach narrative and visualization skills to his students; specifically, students are learning to build a narrative using images depicting the spaces that make up Johns Hopkins: laboratories, classrooms, campus spaces. The students started by learning how to read a single image and moved towards selecting a sequence of images to form a story. He has been working with CER staff to have the students combine Google Sites, Maps, and Drive to display the students’ research projects.

Sheingate assigns his students (class of 20) to groups of four. The students are introduced to the concepts of field observation, interviewing skills, and data collection in the classroom. He works with students to identify an appropriate place in Baltimore City for investigation of the food system—an urban farm, local grocery, soup kitchen, or farmers’ market. Student groups are expected to make several visits to their chosen site. Groups use Google Docs to facilitate their data collection, which also allows Sheingate to monitor their progress.

Sheingate uses Blackboard’s discussion board and has the students write reactions to the weekly reading assignments; this record becomes a collective resource for the class to draw on. Further, he breaks down the final project, which includes a group oral presentation and an individual paper, into assignments that are spread out through the semester. This prevents procrastination. He provides very specific guidelines for the oral presentations including elements that must be included such as data visualizations.

As the final component, each student submits an individual paper written in response to a precise prompt. The paper is based on the group’s work, but relies on the individual’s experience. This makes it less likely that students will be able to cheat or plagiarize. Sheingate provides students with guidelines for what is expected.

He also teaches a larger lecture course on rotation. He has the students in that course complete several small written assignments during the semester based on analyzing primary documents.

Sheingate pointed out that students coming into university today may not be as well-prepared as previously to write a long-form research paper. There are fewer college-level courses where they may be required to write. It’s important to think about how to teach our students to write in ways that will be helpful to their future careers. There are different kinds of writing that can be useful for students to practice, including op-ed pieces, briefs, and scholarly articles. Bringing in a writing coach/teacher to help students in a writing-intensive class might be useful. He emphasized the value of giving students a rubric for a writing assignment that can be returned to them with the graded work. This can act as a diagnostic tool if used early in the semester.

When a research paper is assigned, it is helpful to scaffold assignments to be due over the course of the semester—breaking them down into components (working with primary and secondary sources, preparing an annotated bibliography, writing an abstract) will help students focus on developing specific writing skills with feedback at each step.

In the discussion that followed the presentations, faculty suggested blogging, creating posters, and oral presentations as research paper alternatives they have used successfully.

*********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image sources: Lunch and Learn logo by Reid Sczerba, Center for Educational Resources. Other images are screenshots of Bill Leslie’s students’ work in the course “Johns Hopkins: An Idea of a University.”

 

 

Using a Course Blog as a Class Ice-Breaker

In the fall of 2014 I taught a course, Stuff of Dreams: How Advances in Materials Science Shape the World, in the newly created Whiting School of Engineering’s Hopkins Engineering Applications & Research Tutorials (HEART) program. The program introduces undergraduates to engineering research in specific disciplines in a small class taught by advanced graduate students or postdoctoral fellows. The classes meet once a week for two hours for six weeks. The challenge of teaching these one credit, pass/fail courses with no requirement of the students beyond class attendance, is getting the students engaged.

Image showing the word Blogs dropping onto a sheet of cracked ice.The students in my class were freshman, sophomores, and one junior. Not all were engineers, there was one from the School of Public Health. The students had a mix of backgrounds, interests, ambitions. With a two hour class session, I did not want to lecture; I wanted the classes to be discussion based. With no requirements to do assignments, I had to rely on intrinsic motivation to get students to do reading outside of class and participate in discussion.  My first priority was getting them engaged by relating materials science to their interests. I thought I could use a blog to determine what they wanted to learn.

In general, blogging can be an effective way for students to respond to course readings or to work collaboratively in groups. Blogs can also be used to improve students’ writing along with developing their critical and analytical thinking skills. In this case, I used blogs as a way to get to know my students and their interests, specifically as those intersect with materials science.

Materials science is a very broad field. My research uses computational methods based on quantum chemistry not likely to be accessible to beginning students. Before the course started I polled the students using a Google survey to determine which social media platform they would be willing to use. Facebook and Twitter were among the choices that students rejected. I decided to use a blog based on their responses. There are a number of options for blogging platforms, including Blackboard, which offers both course and individual blogs. I used Blackboard for other course materials, but the blog tool didn’t have some features I wanted, including making the blog available to the public, so that it would stand as a record and could be referred to after the course ended. WordPress is a free, easy-to-use option.

I introduced the blog in the first class session, asking the students to spend up to an hour outside of class to pick an area of interest, then research and post two links to resources on their topic on the blog. The students were then asked to do enough background reading on their topic to give a five minute presentation in class at what I called a Wikipedia level. When the students presented in the second class, I used the links they had provided to teach them how to think critically about information on the web. There was a wide range of content collected, everything from Buzzfeed lists to high-level research articles in scholarly journals. I asked the class how they could evaluate the materials. What claims were being made? Were sources cited? Were those sources credible? It was a good way to educate the students on evaluating content for research purposes, something they need to know as they move forward in their education. In this course, I didn’t ask the students to go through the exercise a second time to find better or more appropriate materials, but in a more traditional course, this could be a two-part exercise.

For the second blog assignment, the students were asked to go through the posts made by their peers, read some of the articles, and comment on them. This helped the students get to know each other and to see where their interests in materials science aligned. They engaged by commenting on each other’s posts. Because the students were determining the topics for discussion in these first couple of weeks, it meant that I was teaching on my feet to some extent. If I didn’t know the answer to a question, I would have the students do just-in-time research, using their laptops or other mobile devices right there in class to figure it out.

The blog worked very well as an icebreaker, getting students interested in the course content and engaged in discussions. Student interaction outside of class was another challenge for me, with the course running only six weeks. The blog provided a way for students to continue their work outside of class in a collaborative way. As researchers and instructors our work doesn’t stop at 5:00 PM, neither should class discussion be confined to the time students spend in the classroom. When students are reading they can immediately post what they are thinking, and their peers can respond with comments. This was the case even with the limited use of blogging in my HEART class, but could be even more effective if used throughout a traditional course. I certainly will use a course blog in the future, and have students write more extensively, perhaps in response to assigned readings. I like the idea of having them do peer review of classmates’ posts. Students seem take pride in their writing, especially when it is open to the public and judged by their peers.

Being able to give formative feedback to students for the first assignment was a valuable teaching strategy. I think the students benefited from gaining an understanding of how to evaluate content on the web.

From my perspective there were no disadvantages to using a blog. WordPress was easy to set up and the students found it intuitive to use. That said, there is a need to think about how you set up the WordPress or other blog instance. It is important to organize the pages so that students are clear on where to post each assignment. You will also want to consider what aspects of the blog to make public if that is applicable. As the site administrator you can make these choices. On my blog only the assignments, posts, and my comments are visible to the public; to view and post comments, users have to be registered. This prevents spam comments, which can be a problem. The blog can be seen at https://h2stuffofdreams.wordpress.com/.

*********************************************************************************************************

Anindya Roy,
Postdoctoral Fellow, Department of Materials Science and Engineering, JHU

Anindya Roy received his Ph.D. in 2011 from Rutgers University. As a computational physicist, Roy’s primary research focus is on understanding materials important for energy harvesting, storage and management, using calculations based on quantum chemistry. Besides materials research, he is interested in teaching at the undergraduate level, and understanding the pedagogical aspects of physics and engineering education.

Note: This post has appeared previously in our Innovative Instructor print series: and in interview form in the Center for Educational Resources February 2016 edition of Research & Teaching Tools.

Image source: CC Reid Sczerba, Center for Educational Resources

Clickers: Beyond the Basics

On Friday, February 5, the Center for Educational Resources hosted the third Lunch and Learn—Faculty Conversations on Teaching. For this session, three presenters discussed their experiences using clickers (classroom polling systems).

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.Leah Jager and Margaret Taub, are both Assistant Scientists and Lecturers who co-teach Public Health Biostatistics in the Department of Biostatistics at Johns Hopkins Bloomberg School of Public Health. This is a required course for Public Health majors, and regularly sees enrollments of 170 plus students. The course focuses on quantitative methods used in public health research. Jager reported that many students feel intimidated by the math. There is no text book for the course, instead students watch short videos before class meetings.

Jager started the presentation, Clickers in Public Health Biostatiscs, with a hands-on demo where the audience used clickers to answer example questions. A basic use of clickers might include checking class attendance or taking a quick quiz on an assignment. Taub and Jager seek a dynamic classroom environment, using clickers to “provide fodder for interaction between students” and gaining formative assessment of student learning of new concepts being taught. In their teaching, clickers are used daily to promote problem solving and peer discussion. They start with “warm up questions” to review materials from previous classes, then move on to checking newly introduced concepts. Jager showed examples of poll results (these may be called results charts, plots, or histograms) and discussed how she and Taub would respond to situations where it was clear that many students understood concepts or not. When students are not clear on the answer to a question, the instructors have them pair up and discuss the question and their answers. The students re-vote, then Taub and Jager review the concept and correct answer. Even when it is apparent that most students understand the material, the instructors briefly review the question to be sure that no one is left behind.

Example of a case report form used to capture data in course survey. Cocoa Content in Chocolate Tasting Trial.Jager and Taub use clickers for data entry as well (see above), a practice that qualifies as beyond the basics. The JHU clicker system (i>clicker) is integrated with the JHU course management system, Blackboard. Using the survey tool in Blackboard as a data recording form allows the instructors to record student responses question by question. It then takes minimal effort to output a spreadsheet with data that can be shared with the class and used for exercises and assignments.

Emily Fisher, Director, Undergraduate Studies and Lecturer, Department of Biology, uses clickers in her classes (Biochemistry, Cell Biology, Genetics). Her presentation, Clickers Beyond the Basics.  Fisher began with a discussion of what she considered to be basic use. Class timeline showing when clicker questions are introduced in a basic use case scenario.This would include a question at the beginning of class to gauge understanding of a pre-class assignment, a formative assessment question midway through class, and a question at the end of class to “place today’s topic in the bigger picture.” This use encourages students to attend class (if answers count toward grade) and acts as a means to “reset the attention span clock.”

Going beyond the basics Class timeline showing when clicker questions are introduced in a beyond the basics use. Fisher uses clickers throughout the class period to help students evaluate data, understand how biological systems work, and engage in higher level critical thinking by engaging in complex problem solving. She also uses the questions to identify student misconceptions. Using student responses and gauging the results charts allows her to make sure that students don’t get lost as she works through building a model for problem solving. Fisher led the audience through a series of slides (see presentation) demonstrating her process.

Fisher noted that using clickers for teaching higher level problem solving takes time to implement but is worthwhile. She explains to students at the beginning of each course how and why she is using clickers in order to ensure buy-in. By developing a model, students get a preview for the type of thinking that will be required to answer exam questions. Students get to practice in class by articulating answers to peers. Fisher has found that the process motivates student engagement, breaks up the lecture structure with active learning, and allows students to see real-world situations.

In the discussion that followed, faculty attendees expressed concern about the amount of time that clicker questions take away from content delivery. Advice from clicker users was to move some content to videos and outside of class assignments. Quizzing can be used to motivate students to complete this coursework.

Johns Hopkins Krieger School of Arts & Sciences and Whiting School of Engineer faculty will receive email invitations for the upcoming Lunch and Learn presentations. We will be reporting on all of the sessions here at The Innovative Instructor.

*********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Lunch and Learn logo by Reid Sczerba, Center for Educational Resources. Other images were taken from the presentations by Leah Jager, Margaret Taub, and Emily Fisher.