Lunch and Learn: Constructing a Comprehensive Syllabus

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Thursday, February 16, the Center for Educational Resources (CER) hosted the third Lunch and Learn—Faculty Conversations on Teaching—for the 2016-1017 academic year. Katie Tifft, Lecturer Biology, and Jane Greco, Associate Teaching Professor Chemistry, shared best practices for creating a comprehensive syllabus.

Tifft and Greco presented as a team, reflecting their commitment to collaboration, and gave an impressive overview of the process they follow. Here are their slides for review. They started by sharing a quote by Gary Gutting “Why Do I Teach?” [New York Times 5/22/2013]: “College education is a proliferation of . . . possibilities: the beauty of mathematical discovery, the thrill of scientific understanding, the fascination of historical narrative, the mystery of theological speculation. We should judge teaching not by the amount of knowledge it passes on, but by the enduring excitement it generates. Knowledge, when it comes, is a later arrival, flaring up, when the time is right, from the sparks good teachers have implanted in their students’ souls.”

This represents an ideal, but in real world practice your experience may differ. One way to ensure that students leave your classroom with the knowledge you hope they will gain is to think about how to construct your course so that the desired learning outcomes align with your pedagogical approaches.

Tifft and Greco noted that standard course planning path is to choose a textbook/readings, produce a syllabus, write or revise lectures and prepare slides, and then create assessments (exams and assignments). This is a teacher-centric approach as it revolves around the content that you as the instructor plan to disseminate.

But what if you wanted to develop a course that was student-centric? Then you might take an approach known as backward design. With backward design you start the course planning process by formulating broad learning goals, then defining specific, measurable learning objectives. To clarify, learning goals express what you want students to get out of the course, while learning objectives detail the specific skills and level of understanding you want students to obtain. Next you design the assessments that will be used to evaluate the students’ mastery of the learning objectives. Finally, you develop the course content and activities and choose supporting texts and readings. This process will help you to create a syllabus that informs the students what you expect them to be able to do at the end of the course, as you will share both the broad learning goals for the course and the learning objectives for each course section on the syllabus.

Tifft and Greco reported that research has shown that the longer and more detailed a syllabus is, the more comfortable students will be, because they can see ahead to what will be coming in the class. They suggest keeping a positive tone, focusing on rewards rather than consequences. They both emphasize collaborative work in their courses, and on the syllabi, which fosters a student-centric environment.

What should the syllabus include? The course schedule in some detail, along with the A sign with an orange background reading "Keep calm and read the syllabus."detailed learning objectives for each unit. The course content will be a major part of your syllabus. Policies for absences and missed work should be included and should be transparent, fair, and set an easily achievable bar by accommodating situations that are bound to occur, such as illness, sports team events, etc. One way to do this is to drop the lowest score if you give multiple quizzes, exams, or homework assignments. Tifft and Greco noted that well thought out and clearly written policies are essential in a large enrollment course, and will help reduce the number of emails from students.

The syllabus should give information about assessments and assignments including due dates, descriptions, the link to learning objectives. Setting the test and assignment dates in stone, so to speak, on the syllabus will help your students know what to expect when. Having a variety of assignments is a good practice as it speaks to the diversity of student learning styles. This isn’t always practical in a large lecture class, but should be considered.

If you are using clickers (classroom polling devices) you will want to include policies for use, credit given for participation, credit for correctness, and contribution to grade. Tifft and Greco do not give credit for correctness as they see that getting something wrong contributes to the student’s learning process.

Grades are a major concern for students at Johns Hopkins; Tifft and Greco said that it is important to be as specific and transparent as possible when describing grading criteria and distribution on the syllabus. Doing so will reduce student complaints and misunderstandings. Some practices to consider in creating a grading scheme include the concept of revision/redemption—giving students a chance to drop a low score or revise a paper. They recommend against grading on a curve to reduce competition and facilitate student collaboration.

Don’t forget to list sources of help for students: office hours, names and contact information for teaching assistants, dates and times for recitations/review sessions, and information about the Learning Den tutoring program or PILOT (peer led team learning) program if applicable.

Finally, Tifft and Greco mentioned the required and recommended statements of policy, such as those on ethics, accommodations for students with disabilities, and copyright compliance. And in closing, they recommend adding a line in your syllabus that reads: “The information on this syllabus is subject to change at any time for any reason.”

Discussion by the faculty in attendance followed. One question asked was “How do you get students to read the syllabus? Should you go over the syllabus in class?” Greco stated that since she is teaching first semester freshman, she spends about 20 minutes on the first day of class going over key points, especially the learning goals and her teaching philosophy. Tifft, who teaches upperclassmen does give a brief summary of key points.

Faculty also shared experiences with grading schemes. Many like the idea of dropping the lowest scores on tests and/or assignments and the concept of redemption, especially when based on how the student has done on other parts of the course work. Some faculty give several section-based exams followed by a comprehensive final. Students who have aced the section exams, are not required to take the final.

The use of extra-credit and make-up work to improve grades was debated. It was agreed that it was important to be transparent in these cases, and to make sure that all students are offered the same opportunities. Greco recommended that faculty not allow students to wait until the end of semester to do make up or extra-credit work as it puts too much burden on you as a grader.

The session ended with Tifft and Greco sharing this cartoon from PhD (Piled Higher and Deeper) by Jorge Cham, something anyone who has ever created a syllabus will relate to.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Image generated by http://www.keepcalm-o-matic.co.uk/

Developing and Facilitating Research-Based Assignments

On Tuesday, December 8, the Center for Educational Resources hosted theLogo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom. second offering in the new Lunch and Learn—Faculty Conversations on Teaching series with two faculty presenting on their experiences in developing and facilitating research-based assignments.

Elizabeth Rodini, Director, Program in Museums and Society and Teaching Professor in the Department of History of Art, led off with a presentation [presentation slides pdf] Incorporating Research into Teaching: 10 tips (in no particular order). Rodini has taught many courses during her time at JHU with students doing research-based assignments. While in some of these students have produced research papers, in many cases the assignments have been less traditional.

Photograph illustrating teaching skills,with two students handing objects in a museum setting.Here are Rodini’s ten tips:

  • Teach Skills—begin with your librarians, who can help students learn basic research skills. Invite a librarian to your class. Other discipline-specific skills include close looking and reading, descriptive writing, proper handling of objects, and learning how to reach out to experts for help.
  • Experiment with Format—move beyond the traditional research paper and have students make posters, create actual or virtual exhibitions (involves researching material, writing text, conceptualizing the whole), or develop an audio tour for an exhibition. Students learn alternative ways of presenting information (visual, oral) and can benefit from the potential public face of this work.
  • Let Content Drive Form—make sure that the content and your learning goals drive the format rather than choosing the form first and trying to build around it.
  • Smaller Is Often Better—doing too many projects in a semester can pose problems for you and your students. Consider how you can break one project into parts. Have students focus on doing one thing well.
  • Focus on Building Blocks—drawing from the previous teaching skills and smaller is better ideas, consider having students do the background work of a research paper without writing it up. For example, they turn in an annotated bibliography, an outline, and abstract, an opening paragraph, or they produce a research portfolio on a particular topic, gathering and ordering the information, perhaps giving an oral presentation. This approach is particularly effective for younger students who are just learning research skills.
  • Look to Other Disciplines—in a science lab, students have the opportunity to see project research as a collaborative process with contributors ranging from the senior faculty on down to undergraduates. This isn’t the case in the humanities. For humanities students the science lab model could be replicated in a group museum project, where the project research is conducted collaboratively toward a shared end with a public presentation. Some of the benefits: a “building block” approach to a project where different people contribute different things; students learn from/teach each other; use of a “lab meeting” format where students give regular, brief updates; and the professor can be part of the team, serving as a model for students.
  • Be A Locavore—encourage students to work on objects/materials/texts we have here in Baltimore. Local venues offer opportunities to connect, see, work with relevant archival material, meet experts, and do original
  • Vary The Feedback—writing comments on papers feels futile when you know they won’t be read. So try other things like oral presentations (use the final exam slot for this in a seminar), or poster sessions, and have outside experts come to these presentations to critique.
  • Practice Asking Questions—another skill/building block that many students are lacking is how to ask new questions of texts and images. In one of my freshman classes we start on the first day with, “What can you observe about an old pair of shoes and what else do you want to know?” [See the educational exercise from an exhibit at the Bata Shoe Museum, 50 Ways to Look at a Big Mac Box].
  • Insist on Revisions—to eliminate useless final comments and make the project worthwhile you can incorporate revisions to work starting early in the semester. Students benefit from genuine critiques to which they must respond.

Joel Schildbach, Professor in the Department of Biology and KSAS Vice Dean for Undergraduate Education, presented [presentation slides pdf] on his research-based course Phage Hunting. The course description reads: “This is an introductory course open to all freshman regardless of intended major. No science background is required. This is … a year-long research-based project lab course in which students will participate in a nation-wide program in collaboration with undergraduates at other colleges. Students will isolate and characterize novel bacteriophages (viruses that infect bacteria) from the environment using modern molecular biological techniques.”

The Hopkins Phage Hunters lab comes to JHU from the Howard Hughes Medical Institute’s Science Education Alliance – Phage Hunters Advancing Genomics and Evolutionary Science program (SEA-PHAGES).  HHMI provides training for instructors and teaching assistants and support for this program across the country. The program is based the work of HHMI Professor Graham Hatfull, University of Pittsburgh.

Negotiating the network to find available positions in research labs around the Photograph showing students in a lab setting.University can be difficult, particularly for incoming freshman. The goal of this course is to provide freshmen students with a lab experience in a small course setting. Enrollments in the sections are limited to 24 students.  Work in the lab starts on the first day, when students bring in a sample of dirt. They then begin a process of isolating a bacteriophage. Because phages are so numerous, it is likely that each of the isolated phages will have not been previously identified. During the course students isolate the phage, purify the DNA, and use an electron microscope to identify it. Assuming their phage has not been previously identified, the student gets to name it and send the record to a national archive. One phage per section is selected for genetic sequencing. The process is both challenging and rewarding.

The benefits to students include experiencing a quick time from the start to seeing progress;, gaining comfort in a lab setting; learning to deal with the failures, repeating processes, and finally, sense of achievement that define lab research; having a sense of ownership of their work; and developing a community of peers.

Schilbach noted that the labs are staffed with both instructors and PhD-level teaching assistants. He stressed that for faculty seeking to implement similar programs, it is essential to have sufficient resources—budget and staff—to ensure success.

For more on this course, see the blog, JHU Phage Hunters, with posts authored by students and instructors.

In the discussion that followed, attendees asked questions and talked about the mechanics of collaborative work and grading group projects. Not all students like group work because they don’t have control over the process, yet many of them will be required to work in teams once they graduate into the workforce. There was consensus that, at least for humanities projects, groups of three were a good number. Larger groups may encourage a phenomenon one faculty member called “social loafing” where a team member relies on others to do the work. It was suggested using contracts for group work, which the students can create themselves, to define the roles and responsibilities of each team member and criteria for evaluation. These can be used at the end of the project for the students to grade themselves and each other. This can them supplement the instructor’s grade. It is also possible for students to work in a group, but submit individual assignments. Elizabeth Rodini pointed out that some group projects may bear more fruit than others, so it is important to have multiple aspects on which to assess students.

In a related discussion, Joel Schildbach was asked about how students deal with failure in the lab. For the phage hunting course, this has not been a big issue, as historically, almost all students have been successful. The idea of repeating a process until you get results is integral to scientific research and the students in the course generally embrace this concept. As to grading, Schildbach uses a multi-tiered grading system based on benchmarks and time lines. There are also graded presentations and a paper at the end of the semester. He noted that freshman first semester grades are covered, which allows students to take some risks.

In regards to managing a number of end of the semester presentations, when those are substituted for a traditional paper, it was suggested that the slotted exam time could be used. Sometimes students are willing to meet in a special session for these presentations, particularly if refreshments are provided. A poster session is an efficient way to handle a larger group of presentations, especially if you invite other faculty or outside experts to assist in the review process.

Johns Hopkins Krieger School of Arts & Sciences and Whiting School of Engineer faculty will receive email invitations for the forthcoming Lunch and Learn presentations. We will be reporting on all of the sessions here at The Innovative Instructor.

*********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image sources: Lunch and Learn logo by Reid Sczerba, Center for Educational Resources. Other images were taken from the presentations by Elizabeth Rodini and Joel Schildbach.

Developing and Using Effective Active-Learning Exercises in Class

On Friday, October 30, the Center for Educational Resources launched ouLogo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.r Lunch and Learn—Faculty Conversations on Teaching series with two faculty presenting on developing and using effective active-learning exercises in their classes.

Vince Hilser, professor and chair, Department of Biology led off with a presentation [presentation slides] describing how he had used active learning to help students understand a core concept, equilibrium, in his Biochemistry course. Showing his sense of humor, Hilser presented a timeline for the first semester he taught the course in 2011: August—Hilser prepares (brilliant) lectures. September, October, November—Hilser delivers (brilliant) lectures to students. January 2012—Hilser receives student evaluations and realizes that students did not learn from (brilliant) lectures.

Vince Hilser's diagram of What is Biochemistry showing inverted triangle with Facts, Reasoning Skills and Core Concept.Convinced that understanding the principle of equilibrium would enable students to truly learn it, Hilser wondered if he could help his students actually see an example of equilibrium.  A classic demonstration of equilibrium is the so-called Apple Wars: An apple tree straddles the properties of two neighbors with yards separated by fences. Every fall the tree drops its fruit and the old man and young man throw the unwanted apples into each other’s yards. Ultimately, as they are throwing, the number of apples on each side will reach a constant state, which is at equilibrium.

In Hilser’s classroom (a large lecture hall), a long line of yellow police caution tape running from front to back stood for the fence. Ping pong balls represented the apples. Students on one side were the young man and could fetch and throw with both hands, on the other side, the old man students were handicapped by being allowed to fetch and throw with the left hand only. A blast from a whistle started the students throwing ping pong balls across the fence, retrieving and throwing back. At the end of a timed sequence the balls were gathered on each side and counted. The exercise was repeated and the results echoed those of the first round. Then Hilser introduced the equation for equilibrium, filling in the results from the ping pong war demonstration to demonstrate the application of variables.  Once the students have seen in real life what equilibrium is, the equation make sense to them. They can then move on to methods of inquiry and how biological systems work.

Hilser could see from course assessments that students had a firmer grasp of the concepts. Evaluations showed that 86% of the students felt that the apple wars demonstration was effective in helping them to understand and apply the concept of chemical equilibrium. Students trusted the facts because they had experienced the proof. One student commented, “This really made me believe that organized randomness occurs in nature,” a statement that shows a high level of perception and extrapolation. Hilser’s presentation demonstrated that a good active-learning exercise can be worth more to students than a lot of words from the sage on the stage.

Todd Hufnagel, Professor in the Department of Materials Science and Engineering, presented [presentation slides] on his experience with using peer instruction in his Structure of Materials course. This class typically has 20 to 25 students.

Photograph showing students in the active learning classroom in Todd Hufnagel's Structure of Materials course.In 2011 Hufnagel received a grant from the National Science Foundation (NSF). In response to the broader impacts requirement, he decided pursue an educational research project. For Hufnagel, a core principle underscores his teaching philosophy as articulated in this quote from Herbert A. Simon: “Learning results from what the student does and thinks and only from what the student does and thinks.” The grant allowed him to test whether student learning outcomes would be better if the course was taught using an active-learning model or using a traditional lecture style by teaching it twice each way in alternating years.

He turned to a model developed by Harvard’s Professor of Physics, Eric Mazur, involving the use of concept inventories and peer learning. “A concept inventory is a criterion-referenced test designed to determine whether a student has an accurate working knowledge of a specific set of concepts.” Students are given a concept inventory test at the beginning of the semester and again at the end of the semester to measure their learning gains.

During the semester, the concept questions are used as a basis for peer instruction. Hufnagel introduces a slide with a multiple choice question. Students use their clickers to vote on what they think is the correct answer. Hufnagel shows them a histogram of all the answers. If the histogram indicates that students are confused as to the correct answer, he asks students to discuss the question in pairs of small groups.  Based on the idea that the best way to learn something is to teach it, students who know the correct answer will explain the concept to those who don’t.

After discussing the question, the students are asked to vote again. The instructor can then determine the level of understanding and proceed with a full explanation, a quick clarification, or simply affirm that the students are correct and move on to the next concept.

Is active learning better? Hufnagel’s comparison of teaching the class two ways showed that improvement in concept inventory scores in lecture version of class was 63%, for the active learning classes the improvement was 100%. He also surveyed the students about how their confidence in understanding the material.  Interestingly, the lecture course students rated their knowledge much higher than the active learning students. Hufnagel thought this is because the active learning setting makes students realize how much they don’t know, while the lecture course students aren’t as aware of what they don’t know.

Hufnagel detailed the pros and cons of using a peer-instruction approach. On the plus side, students learn more, and the instructor gets more effective feedback on what they students actually know as s/he circulates through class listening to their discussion. Hufnagel also noted that this approach was much more fun for him as a teacher. The drawbacks are that it can be more difficult to “cover the material,” and there is a significant time commitment on the part of the faculty. For the first, Hufnagel noted that the important thing is that students understand the material that is covered, and that students can be made responsible for learning some of the content outside of class. As to the second, while it is easier and faster for faculty to write lectures, once the concept questions are written, they have a long shelf life and can be re-used. In the end, the strong evidence of improved student learning gains with active learning is a compelling argument for using these teaching strategies.

Faculty attendees had questions and made comments during the discussion period. Following is a summary of some of the main points.

On ways of handling coverall “all the material,” Hufnagel assigns reading and watching videos outside of class. He finds the students like the videos as they can tackle content on their own schedule and repeat as often as needed to understand the material. There is quick four question quiz on the assignment to encourage students to both do the work and to help them retain the concepts. Research tells us that students learn by being asked to recall content frequently. He spends the first five minutes of class talking informally, perhaps brining in a topical information to increase interest, then spends the rest of the class on concept questions. Typically he will get through about six questions per class. He tells his students that he has data that show students learn better with active learning and that helps with buy-in to what may be a new learning experience.

To faculty questioning how much time had to be allocated for active learning exercises, Hilser explained that the ping pong ball demonstration takes an entire class, but it establishes an understanding of a concept so fundamental to the course that is it worth the time spent.

A question, “What about teaching the facts?  What if students don’t absorb enough factual knowledge?” led to a response by Hilser that there are many facts that are critically important as base knowledge, absolutely required facts. But he and Hufnagel agreed that beyond the core facts, students can look up information. The instructor’s role is to provide context.

One attendee noted that he has participated as an instructor in a department where lecture and active learning course covering the same content are running in parallel.  The active learning class do slightly better (10%) on exams, but they are much happier in class–more satisfaction is seen in the active learning students.

Johns Hopkins Krieger School of Arts & Sciences and Whiting School of Engineer faculty will receive email invitations for the forthcoming Lunch and Learn presentations. We will be reporting on all of the sessions here at The Innovative Instructor.

*******************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image sources: Lunch and Learn logo by Reid Sczerba, Center for Educational Resources. Other images were taken from the presentations by Vince Hilser and Todd  Hufnagel.