Quick Tips: Tweeting to Learn

Twitter Logo Blue BirdToday it seems that everyone is tweeting, from politicians to celebrities to regular folks. And yes, even academics are tweeting. For high profile users, Twitter allows users to quickly get out a message to followers, whether political or public relations. For academics, it can be a great way to share conference takeaways, timely articles, or, in the case of Johns Hopkins University Professor of History, Martha S. Jones, to stimulate class discussion. A recent article in the JHU Hub, History Class Meets the Digital Age, details Jones’ practice.

Jones thinks that giving students skills in using social media is as important as teaching content and having students learn to do research. “Which is why this semester, six sessions of Jones’ History of Law and Social Justice course are taking the form of Twitter chats. Over the period of an hour, Jones posts 10 questions related to that unit’s reading, and students—along with anyone else who happens to drop in on the chat—respond and discuss. Far from an afterthought, the chats—conducted using the #lawsocialjustice hash tag—are a central element in the course and determine 30 percent of a student’s grade.”

Just as they might do in class, these students are participating in a discussion, albeit one they can contribute to while in their pajamas lounging at home as easily as in the quiet space of the library or while sitting on the quad enjoying the fall weather.

“The questions are rapid-fire, with a new one popping up every six minutes. Students are required to answer each question, which means that responses often overlap, but also that all 20 can fully participate in a way not always possible in a traditional class setting. Responses are limited to Twitter’s 280 characters, which encourages students to distill their thoughts, though many are also learning to “thread” their responses to allow for greater depth.”

And the audience is not limited to the instructor and classmates; Jones invites her 8,000 plus Twitter followers to join in as well. These additional voices enrich the students’ learning experience as they become teachers themselves byclarifying or providing nuance to their responses when questioned by others on the chat. In some cases, the followers contribute additional expertise to the conversation. Jones appreciates the give and take with a larger community as well the view that students get into her roles as a professional/scholar/researcher—something that undergraduates may not always see or have access to in their relationships with faculty.

If you are interested in using Twitter in your class, read the full article to get more detail. In addition, two previous Innovative Instructor posts have looked at using Twitter in the classroom and will provide additional resources: Using Twitter in Your Course (December 10, 2014) and Tweeting the Iliad (November 22, 2016). Faculty have asked about whether students might have reservations about setting up a Twitter account. If tweeting will be a requirement for your course, it would be wise to make that clear in the course description and again on the first day of class. Student response to tweeting in Jones’ course and to the courses described in the previous blog posts on Twitter have been overwhelmingly positive. The Innovative Instructor welcomes comments on your pedagogical experiences with Twitter specifically or social media more generally.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Twitter blue logo https://about.twitter.com/press/brand-assets

Definitions

Recently, in discussion with some colleagues, confusion was expressed about the terms inquiry-based learning, problem-based learning, case-based learning, and experiential learning. How are these alike and how are they different? Are there overlaps? What distinguishes one from another? I thought providing some short definitions of these terms, along with a few resources, might be useful to others seeking clarity.

Group of students working togetherInquiry-based learning (IBL) is a term used broadly to include pedagogical approaches that put the students at the center of the learning process, allowing them to undertake investigations by asking questions to solve problems. The University of North Carolina has published an annotated bibliography of resources on IBL.

Problem-based learning (PBL) is described by the Institute for Transforming Undergraduate Education site, Problem-Based Learning at University of Delaware: “In a problem-based learning (PBL) model, students engage complex, challenging problems and collaboratively work toward their resolution. PBL is about students connecting disciplinary knowledge to real-world problems—the motivation to solve a problem becomes the motivation to learn.”

And in Why PBL?, “In a problem-based learning (PBL), students work together in small groups to solve real-world problems. PBL is an active and iterative process that engages students to identify what they know, and more importantly, what they don’t know. Their motivation to solve a problem becomes their motivation to find and apply knowledge. PBL can be combined with lecture to form a hybrid model of teaching, and it can be implemented in virtually all courses and subjects.”

A widely cited book by Maggi Savin-Baden, Problem-Based Learning in Higher Education: Untold Stories [McGraw-Hill International, 2000], provides an in-depth look at PBL. See an excerpt here.

The Center for Teaching at Vanderbilt University has a teaching guide on team-based learning. “Team-based learning (TBL) is a structured form of small-group learning that emphasizes student preparation out of class and application of knowledge in class. Students are organized strategically into diverse teams of 5-7 students that work together throughout the class.  Before each unit or module of the course, students prepare by reading prior to class.” The guide provides information on theory and structure, as well as a section called Where can I learn more?, which references the Team-Based Learning Collaborative as well as books and articles.

Case-based learning employs the use of discipline-specific, situational narratives as a launch pad for student learning. A case-based learning wiki from the Department of Educational Psychology and Instructional Technology, University of Georgia tells us that “[c]ase-based learning can cover a wide variety of instructional strategies, including but not limited to, role plays, simulations, debates, analysis and reflection, group projects and problem-solving. It provides a great deal of flexibility at the practical level.” The wiki not only describes the characteristics of case-based learning, but also discusses how to implement it – defining both the instructor’s and the students’ roles, offers some information about developing cases and designing learning activities, gives an overview of assessment, and provides references. See also The Innovative Instructor post Quick Tips: Using Case Studies.

The Center for Teaching and Learning at the University of Texas Austin defines experiential learning as “any learning that supports students in applying their knowledge and conceptual understanding to real-world problems or situations where the instructor directs and facilitates learning.” These experiences can take place in a number of settings including classrooms, labs, studios, or through internships, fieldwork, community service, clinical or research projects. The UT Austin webpage on experiential learning discusses the importance of this method, how it works, what it looks like in practice, and describes the forms it can take. A list of reference is provided. See also: Learning by Doing – Case-in-Point, an Innovative Instructor blog post by Adriano Pianesi.

As this compendium demonstrates, these terms are interconnected.  Inquiry-based learning is an umbrella for the pedagogies described. Case-based learning and team-based learning may be used as strategies in implementing IBL or problem-based learning. Experiential learning allows students to engage in authentic experiences with an instructor or facilitator acting as a guide.

*************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Pixabay

The Toolkit for Inclusive Learning Environments

The Innovative Instructor has featured several posts recently on inclusivity and diversity in the classroom. This is an important issue, and one that is very much on my radar screen as I have been involved in developing TILE–the Toolkit for Inclusive Learning Environments (see post here). On Wednesday, March 25th, we had our first session with interested faculty to explore best practices.

As part of the program, we introduced three examples of the types of course components we envision for the toolkit. These could be in-class activities, assignments, projects, case studies, role-playing, experiential learning, best practices or recommendations.

1. CRITICAL THINKING EXERCISE

Screen shot from Twitter Feed of the PR firm StrangeFruit showing the two women founders explaining that they thought the term strange fruit could mean something different than it did historically.

Twitter.com screen shot.

Pedagogical Approach: Critical Thinking Exercise 

Students can do this in class on their laptops, tablets, or smart phones.

In 2014 a food and entertainment PR firm was the subject of a media backlash because of their chosen company name. What is wrong with the name? What is the history of the name both past and more recently? How would you have advised the firm to remedy the situation? [By the way, you can find the full story here.]

 Potential Learning Outcomes:

  • Students will be able to discuss why basic research and information literacy skills are imperative to making business decisions.
  • Students will understand the negative consequences of 1) not doing basic research, and 2) not being culturally competent and/or sensitive.
  • Students will understand the importance of gaining cultural competence when it comes to issues or terms that they may not personally understand but may be a sensitive subject for others.
  • Students will have a broader knowledge of a tumultuous time in recent US history.
  • Students will be able to articulate the meaning and history of a song labeled “The Song of the Century” by Time magazine in 1999.
  • Students will be able to discuss the meaning of the term “strange fruit.”

2. CASE STUDY

Male crash test dummy in driver's seat.

Brady Holt http://de.wikipedia.org/wiki/Crashtest-Dummy#/media/File:IIHS_crash_test_dummy_in_Hyundai_Tucson.jpg

Pedagogical Approach: Case Study

Adapted from Stanford’s Gendered Innovations, Pregnant Crash Dummies Case Study. In 1949 the US military developed Sierra Sam, the first crash test dummy based on a 95th percentile male body. A female body type was introduced in the 1970s, children crash test dummies in the 80s, and babies in the 90s. There is one group/body type that is not required in vehicle crash tests and yet accounts for the number one fatality rate among a certain group. Any guesses?

“Conventional seatbelts do not fit pregnant women properly, and motor vehicle crashes are the leading cause of fetal death related to maternal trauma (Weiss et al., 2001). Even a relatively minor crash at 56km/h (35 mph) can cause harm. With over 13 million women pregnant across the European Union and United States each year, the use of seatbelts during pregnancy is a major safety concern (Eurostat, 2011; Finer et al., 2011).”

What are the dangers to the fetus with the current seat belt system? Could you design something better? Given what you know, what requirements or federal policies or disclaimers would you require that are currently not in place? Do the standard seatbelt and seat requirements leave any other segments of the population at risk? If so, who?

Potential Learning Outcomes:

  • Students will understand the importance of a diverse team.
  • Students will be able to discuss the dangers in design when diversity is NOT considered.
  • Students will understand that a one-size-fits-all approach in design overlooks important segments of the population.
  • Students will understand the need for policies that require design for all segments of the population.
  • Students will create a solution that requires inclusive design considerations.

Citations

Eurostat. (2011). Fertility, Figure 1: Number of Live Births, EU-27, Legally Induced Abortions by Year, Country, and Mother’s Age, EU-27. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_fabort&lang=en

Finer, L., & Kost, K. (2011). Unintended Pregnancy Rates at the State Level. Perspectives on Sexual and Reproductive Health, 43 (2), 78-87.

Weiss, H., Songer, T., & Fabio, A. (2001). Fetal Deaths Related to Maternal Injury. Journal of the American Medical Association, 286 (15), 1863-1868.

3. RECOMMENDATION FOR BEST PRACTICE—GUEST LECTURES OR PANEL OF EXPERTS

Image showing a number of faces of people, male and female, of different ages, races, ethnic, and cultural groups. The images are staggered and framed with brightly colored lines suggesting computer monitors.

Pixabay http://pixabay.com/en/system-network-news-personal-591225/

Pedagogical Approach: Guest Lecture or Panel of Experts

Identify minority experts in your field and bring them in as a guest lecturer or for a class discussion. They should spend most of the time on their scholarship and area(s) of expertise and only speak about their minority status in the field when and if they themselves choose.

Potential Learning Outcomes:

  • Students will see someone as a role model for both minorities and non-minorities based on that person’s accomplishments and expertise in their shared area of study.
  • If the expert is respected by the student’s professor, the students will also show/gain respect for the expert.
  • Due to professor’s modeled behavior, students could also potentially treat minority experts as equals when they encounter them in the field.
  • Students may evolve into professionals who support and understand some of the challenges that minorities face in their field.

We have asked those interested in contributing their own examples to submit a PowerPoint slide with the following format: on a single slide, start with an image that is relevant to the example. We ask that the images be rights-free or have a Creative Commons license with attribution in either case. In the Notes section below the slide, describe the pedagogical approach, give the information necessary to implement the example, and list potential learning outcomes.

You are invited, too. If you have an example you’d like to submit, please contact me via the comments with a brief message and an email address. We are looking forward to sharing your contributions.

Macie Hall, Senior Instructional Designer, Center for Educational Resources

 

Case Studies for an Inclusive STEM Classroom

As part of our work on the TILE – Toolkit for Inclusive Learning Environments – project (see previous post) my colleagues and I have been uncovering some great resources for fostering diversity and inclusion in the classroom.  I am always on the lookout for sources for case studies (see Quick Tips: Using Case Studies) and the Gendered Innovations project covers both bases.

Screenshot of the Gendered Innovations science case studies web page.

Gendered Innovations is a peer-reviewed project developed by Londa Schiebinger at Stanford University.  “Londa Schiebinger is the John L. Hinds Professor of History of Science in the History Department at Stanford University and Director of the EU/US Gendered Innovations in Science, Health & Medicine, Engineering, and Environment Project. Over the past twenty years, Schiebinger’s work has been devoted to teasing apart three analytically distinct but interlocking pieces of the gender and science puzzle: the history of women’s participation in science; the structure of scientific institutions; and the gendering of human knowledge.” [http://web.stanford.edu/dept/HPS/schiebinger.html]

From the Gendered Innovations website we learn that research has shown that sex and gendered bias is counterproductive and costly.  It can result in human suffering and death in the case of drugs developed and released without proper testing on women, and leads to “missed market opportunities” when products don’t consider shorter people – women and men. For research, failing to recognize gender differences may yield faulty results. The goal of the Gendered Innovations project is to provide scientists and engineers with practical methods for sex and gender analysis.

As a means to that end, there are a number of case studies provided for science, health and medicine, engineering, and the environment. These include extensive bibliographies. There is also a wealth of information on the website that provides a framework for thinking and teaching differently in your classroom.

Macie Hall, Senior Instructional Designer, Center for Educational Resources

Image Source: Screenshot of the Gendered  Innovations science case studies web page – http://genderedinnovations.stanford.edu/case-studies-science.html

A Manual for Flipping Your Classroom

The Innovative Instructor has featured several posts on flipping your classroom (see here, here, here, and here) a technique that has students learning content on their own time and using class time to work on problems, discuss materials, or engage in collaborative activities.

Text reading flipping the classroom with the classroom upside downJust in time for the upcoming semester, the Chronicle of Higher Education has published A Guide to the Flipped Classroom, available for free download. The manual, in PDF form, collects seven case studies and articles on the process of flipping the classroom that appeared in the CHE over the past three years. Faculty teaching evolutionary biology, chemistry, mathematics, and business topics weigh in on their experiences.

The experiences of Andrew Martin, a professor of ecology and evolutionary biology at the University of Colorado, Boulder, are highlighted in the first article. The article notes that innovations in pedagogy, technology such as clickers, support and advocacy from those who want to improve higher education, and economic realities have helped to popularize this teaching technique.

The second article describes a student’s view of a flipped chemistry course at Southwestern University in Georgetown, Texas. With the flipped classroom, learning takes center stage over teaching.

Stephen Neshyba describes his experience flipping his chemistry class at University of Puget Sound noting that moving to a flipped class may change “which kinds of students excel and which ones struggle.”

Two articles by Robert Talbert, a mathematician and educator at Grand Valley State University, look at the pedagogical reasons and advantages for flipping a class, and why students may push back when a course is flipped. There are suggestions on how to handle this. Talbert also blogs for the CHE at Casting Out Nines, where he has documented in detail his experiences with flipping his classes.

A study shows that physics faculty often try new methods and then abandon it in the face of student challenges. An article addresses what faculty who want to explore new teaching methods can learn from this research.

Finally there is a profile of Norman Nemrows, a professor of business at Brigham Young University. He began recording his lectures about 15 years ago. His experience raises the question “Are professors willing to become sidekicks to slick video productions?”

At the end of the manual there is a short list of resources to help you whether you are a novice or a seasoned flipper.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: © Macie Hall, 2013

Using Twitter in Your Course

The Innovative Instructor has written about using Facebook in the classroom, what about Twitter? What’s next? you might ask, Pinterest? Yes, even Pinterest seems to have inspired faculty to find uses for its boards in the classroom. Today, however, I want to make a case for using Twitter.

Twitter Logo Blue BirdWhat is Twitter? Wikipedia tells us that “Twitter is an online social networking service that enables users to send and read short 140-character messages called ‘tweets’. Registered users can read and post tweets, but unregistered users can only read them.” From celebrities to revolutionaries, the Twitterverse (aka the Twittersphere) is comprised of more than 500 million users; 271 million of these use Twitter actively. While many complain that the content is mostly inane babble, there are serious, even scholarly, conversations taking place on Twitter every day.

This example of an educational use comes from the CIRTL MOOC, An Introduction to Evidence-Based Undergraduate STEM Teaching, now completed, but due to run again in the near future.  If you signed up for the MOOC, you may still be able to access the content. The Twitter example was presented in Week Five: Inclusive Teaching and Student Motivation.

Margaret Rubega, Associate Professor in the Department of Ecology and Evolutionary Biology at the University of Connecticut with a PhD in ornithology, decided to use Twitter, appropriately enough, for her introductory ornithology course. Rubega describes the course as face-to-face with approximately 100 students each semester it is taught. There is no lab component, so she struggled to find ways to introduce active learning in what has been primarily a lecture format. Another issue is that most of the students have grown up watching nature programs on TV (or YouTube videos), which exposed them to the concept that animals and birds are exotic species that live in remote areas. To her incoming students, nature was something that takes place somewhere else.

Rebega wanted to get her students to appreciate the way that biology plays out in their world. That it is something that they could observe when they walked out of the classroom onto campus. She knew that telling them (in lecture form) did not equal an appreciation that comes from observation and experience. She wondered if she could get students to use their electronic devices in some way that would force them to look up and see what was happening around them.

Thus was born #birdclass. The # sign is called a hashtag and is used to identify a specific conversation within the cacophony of tweets. By using the hashtag, Rubega and her students could have a targeted discussion. You can search Twitter for #birdclass to see the class-related tweets. Rubega assigned her students to tweet once a week. Each tweet was to 1) identify where they were, 2) what bird-related phenomena they saw, and 3) how it connected to course content. If it had the required three components, the tweet was awarded three points. She put a cap on the total number of points she would award each student.

Rubega’s initial goal was to make students take the course content outside of the classroom and see that what was described in class actually occurs in their world. She looked at Twitter as a tool that would allow her and her students to gather their observations in a way that was immediate and easy to access. She was not thinking about the social implications.

As soon as the students started using Twitter (and Rubega was posting to encourage them and provide examples of her expectations), their interest in engaging in conversation with her and their peers became immediately apparent. She began retweeting (forwarding and promoting in Twitter parlance) their best tweets to a larger audience interested in ornithology and thus facilitating a broader conversation outside of the class. This provided feedback from others in the field. The social aspect created instructional value that Rubega had not anticipated.

The second year she taught the course using Twitter, she traveled to Belize during spring break. She had not mentioned this trip to her students. While in Belize she began posting a list of birds she seen and asked if her students could identify where she was. Even though it was spring break and she had no expectation that any of her students would be monitoring their Twitter feeds, several student responded immediately. In a series of tweets, they worked on figuring out her location by looking at bird range and distribution charts. Rubega described being “blown away” by this experience. Further, when she returned to class, she gave the winning (first to correctly guess her location) student a token souvenir as a prize. This young women commented that she had learned more about geography in doing research during this tweet exchange than she had in high school.

Rubega maintains that Twitter works for her students because it allows self-directed, real-life discovery of the world around them. Their observations bring affirmation of what they have heard in class. The reward comes via interaction with their peers and a larger community of ornithologists, as well as acknowledgement of their tweets with the point system. By the end of the course, the students are using their knowledge to teach others in the Twitter ornithology community – by correcting and commenting on others’ identifications and observations, for example.

In thinking about the kind of learning that students achieve in the tweeting assignment, many of their tweets involved application and analysis (Bloom’s Taxonomy). This represents a higher level than might normally be associated with a straight lecture format – typically, transfer of knowledge and comprehension by the students.

You can see Margaret Rubega’s tweets at https://twitter.com/profrubega. Besides teaching at the University of Connecticut, she is also Connecticut’s state ornithologist.

If you are interested in using social network applications, such as Twitter, in your classroom, there are several articles by Derek Bruff, director of the Vanderbilt University Center for Teaching and a senior lecturer in the Vanderbilt Department of Mathematics, that will be informative. In an article in the Chronicle of Higher Education, A Social Network Can Be a Learning Network (November 6, 2011), Bruff references the concept of “social pedagogies,” a term coined by Randall Bass and Heidi Elmendorf, of Georgetown University. “They define these as “design approaches for teaching and learning that engage students with what we might call an ‘authentic audience’ (other than the teacher), where the representation of knowledge for an audience is absolutely central to the construction of knowledge in a course.” Leveraging student interests through social bookmarking, a CIRTL Network blog post from August 22, 2012, describes Bruff’s experiences using social bookmarking in two classes he has taught. And his students’ preferences for social bookmarking tools are discussed in a post, Diigo Versus Pinterest: The Student Perspective (May 31, 2012), on Bruff’s Agile Learning blog.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: Twitter blue logo https://about.twitter.com/press/brand-assets

Quick Tips: Using Case Studies

Sometimes we see a link to a resource or hear of a teaching solution that we want to share. The Innovative Instructor provides the perfect place for this. In our Quick Tips you’ll be getting “Just the facts, ma’am.” Or sir, as the case may be.

Students in discussionOne of our CER colleagues, Mike Reese came across a link to a great online resource for case studies (also called case reports), the National Center for Case Study Teaching in Science (NCCSTS).

From the NCCSTS website. “[Case studies] can be used not only to teach scientific concepts and content, but also process skills and critical thinking.  And since many of the best cases are based on contemporary, and often contentious, science problems that students encounter in the news, the use of cases in the classroom makes science relevant.” (http://sciencecases.lib.buffalo.edu/cs/about/)

If you want to know more about case studies and the value they can provide in your teaching, the Colorado State University Writing Guide to Case Studies is a good place to start.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: Microsoft Clip Art