Learning by Doing – Case-in-Point

group of business people in silhouette against city skylineCase-in-Point is a method of experiential learning used to teach leadership. An integral part of the theory of Adaptive Leadership™  it was developed over the past 15 years by Ronald Heifetz, Marty Linsky, and their colleagues at the Harvard Kennedy School of Government. The method involves using the actions and behaviors of individual participants as well as focusing on the group of which they are members.

Case-in-Point is an immersive, reflective, and ideally a reflexive exercise facilitated by an instructor but in best practice, shaped by group/class participants. Case-in-Point help leadership practitioners with two key components of leadership development:
• It is teaching method that more realistically prepares people to have stamina, resilience and a willingness to work with others in the heat of change in order to adapt, because “to lead is to live dangerously.
• It helps practitioners generate a heightened awareness of themselves, their impact and the systems they are a part of.

Two Critical Distinctions
According to Heifetz, the Adaptive Leadership framework includes two critical distinctions that are central for understanding case-in-point:
• Authority/Leadership
• Technical Problems/Adaptive Challenges

Authority/Leadership. The first distinction clarifies that having a position of authority does not mean that we exercise leadership. Heifetz reminds us that an expert is not necessarily a leader:

For many challenges in our lives, experts or authorities can solve our problems. . . . We look to doctors to make us healthy, mechanics to fix our cars. . . .We give these people power, authorizing them to find solutions. . . . The problems may be complex, such as a broken arm or a broken carburetor, but experts know exactly how to fix them.

To determine whether we need to exercise authority or leadership, we need to analyze the nature of the problem we face. That brings us to the second distinction:

Technical Problems/Adaptive Challenges. Rather than being technical problems, many of the challenges we face today are adaptive. Heifetz and Linsky maintain:

The problems that require leadership are those that the experts cannot solve. We call these adaptive challenges. The solutions lie not in technical answers, but rather in people themselves. . . . The surgeon can fix your son’s broken arm, but she cannot prevent your son from rollerblading without elbow pads. The dietitian can recommend a weight-loss program, but she cannot curb your love for chocolate chip cookies. . . . Most people would rather have the person in authority take the work off their shoulders, protect them from disorienting change, and meet challenges on their behalf. But the real work of leadership usually involves giving the work back to the people who must adapt, and mobilizing them to do so.

The practice of leadership takes place in an authority structure. In an adaptive challenge, the authority structure—the people in charge—can contribute, but others must participate as well. All people involved are part of the problem, and their shared ownership of that problem becomes part of the solution itself.

Reflecting on these two distinctions, it is easy to see how professors, trainers, and consultants often end up treating the adaptive challenge of teaching as a technical problem, and applying the power of expertise by telling people what to do.

Professors, trainers, and consultants are paid for teaching, not for facilitating learning in others. “You are the expert: teach us” seems to be the implicit contract that students expect instructors to uphold. Many educators consider teaching a technical problem, exercise authority rather than leadership, and deploy their power or personality to influence student learning. In the process, they avoid conflict, demonstrate resolve and focus in their use of time, and provide decisive and assertive answers to problems through authoritative knowledge built over many years. Learners in the class find comfort in the predictability of the endeavor and by its inevitable output delivered according to the plan.

The cost of this collusion is the energy, engagement, effectiveness, and ultimately meaning of the learning enterprise itself. The result is that people lose their ability to grow through experience, tolerate ambiguity, and use sense-making skills.

Case-in-point supports learning over teaching, struggle over prescription, questions over answers, tension over comfort, and capacities and needs over deficiencies. It is about embracing the willingness to be exposed and vulnerable, cultivating persistence in the face of inertial pushbacks, and self-regulating in the face of challenge or open hostility. Why? Because this is what leadership work looks like in the real world. In the process, students and the facilitator learn to recognize their default responses, identify productive and unproductive patterns of behavior, and test their stamina, resilience, and readiness to change the system with others.

Planning and Facilitating with Case-in-Point
In case-in-point, a facilitator must not take reactions toward him personally and must encourage the same in participants. This may mean not taking offense for disrespectful behavior and later asking the person to reflect on how productive his statements were.

Ultimately, the role of the facilitator in case-in-point is to demonstrate the theory in practice, by acting on the system in the class. Case-in-point uses the authority structure and the roles in a class (instructor, participants, stakeholders) and the social expectations and norms of the system (in this case, the class) to practice in real time the meaning of the key concepts of authority, leadership, adaptive challenge, technical problems, factions, and so on.

Planning. How does a facilitator plan a session where she uses case-in-point? As in Jorge Luis Borges’ novel The Garden of the Forking Paths, the text—in this case, the lesson plan—is the point of departure for many possible learning events. The facilitator follows the emergence of interesting themes amid interpersonal dynamics and investigates those dynamics, in response to the guiding question, “What does this moment illustrate that is relevant both to the learning and to the practice of leadership in participants’ lives?” What emerges in the action pushes the class down one path of many possible junctures. For the facilitator, the implicit lesson plan turns into a labyrinth of many exciting—albeit sometimes overwhelming— possibilities.

Facilitating. A case-in-point facilitator’s main tool is the question. Questions are the currency of inquiry, and ultimately case-in-point involves ongoing research into the art of leadership that benefits as more people join the conversation. Here a few questions that I have used successfully:
“What’s your intention right now?”
“What did you notice as you were speaking?”
“In this moment, what do you need from the group to proceed?”
“What happened as soon as you asked everyone to open their books to page 5?”
“What have you noticed happens in the group when I sit down?”
“Am I exercising leadership or authority right now?”

Michael Johnstone and Maxime Fern have expanded on four different levels of intervention for a case-in-point facilitator.

At the individual level: The facilitator may comment on someone’s contribution or action for the sake of reflection, trying to uncover assumptions or beliefs. For example, “Mark, could I ask you to assess the impact on the group of the statement you just made?” “What should I do at this point and why should I do it?” “Are you receiving enough support from others to continue with your point?”

At the relationship level: The facilitator might intervene to name or observe patterns that develop between two or more participants. For example, she may say something like, “I noticed that when Beth speaks, some of you seem not to pay attention.” Or “What does this disagreement tell us about the different values that are present in the room?”

At the group level: The facilitator might confront a faction or a group with a theme emerging from the conversation, maybe after participants agree with or disagree on a controversial statement. For example, “What does the group propose now? Can you articulate the purpose that you are pursuing?” “I noticed many of you are eager to do something, as long as we stop this process of reflection. Why is that?”

At the larger level: The facilitator might comment on participants’ organizations, communities, nationalities, or ethnicities, saying for example, “In light of the large number of foreign nationals in the room, what are the implications of the insistence in the literature that Jack Welch of GE is a model for global leadership?”

 A Way of Being, Not a Way of Teaching
For me, case-in-point is rooted in the distinction between an ontological (science of being) versus an epistemological (science of knowing) view of leadership. When we teach using the case-in-point approach, we’re helping our students learn how to act their way into knowing what is right for their specific organization rather than bestowing our knowledge for them to apply, whether it fits their circumstances or not. Likewise, case-in-point is a statement of congruity, of “practicing what we preach” and, in the process, learning to be better instructors. At the same time, we introduce our students to an exciting realm of possibility, aspiration, and innovation beyond technique or theoretical knowledge.

Rules of Engagement
Johnstone and Fern provide the following rules of engagement for case-in-point facilitators:
• Prepare participants by warning them that learning will be experiential and may get heated. For example, create a one-page overview to leave on each table that clarifies all the concepts of the class and includes bibliographical information.
• Encourage listening and respect (though not too much politeness). For example, establish a clear rule that participants need to listen to each other and state their opinions as such rather than as facts.
• Distinguish between case-in-point and debriefing events. For example, set up two different places in the room—one for case-in-point sessions and one for debriefs—or announce ahead of time which kind of event will follow.
• Facilitators must not take reactions toward them personally and must encourage the same in participants.
• Recognize that no one, including the facilitator, is flawless. Acknowledge and use your own shortcomings by recognizing mistakes and openly apologizing for errors.
• Treat all interpretations as hypotheses. Ask people to consider their own reactions and thoughts as data that clarifies what is going on in the room.
• Respect confidentiality.
• Take responsibility for your own actions. Invite people to own their piece of the “mess” by asking how they have colluded in the problem they are trying to deal with.

For Further Reading
Brown, J., and Isaacs, D., The World Café: Shaping Our Futures Through Conversations That Matter (Berrett-Koehler, 2005)
Daloz Parks, S., Leadership Can Be Taught (Harvard Business School Press, 2005)
Johnstone, M., and Fern, M., Case-in-Point: An Experiential Methodology for Leadership Education and Practice (The Journal, Kansas Leadership Center, Fall 2010)
Heifetz, R., Grashow, A., and Linsky, M., The Practice of Adaptive Leadership (Harvard Business Press, 2009)

The text for this post originally appeared as a longer article by Adriano Pianesi: “The Class of the Forking Paths”: Leadership and “Case-In-Point.” The Systems Thinker, Vol. 24. No. 1. Feb. 2013.

*****************************************************************************************************

Adriano Pianesi teaches leadership at the Johns Hopkins University Carey Business School and is the principal of ParticipAction Consulting, Inc.  He holds a Master’s degree in Corporate Communication from the University of Milan. Pianesi is a member of the Society for Organizational Learning and the World Cafe’ community of practice, as well as a certified Action Learning coach and a passionate experiential learner/teacher.


Image Source: Microsoft Clip Art

To Curve or Not to Curve

A version of this post appeared in the print series of The Innovative Instructor.

Yellow traffic signs showing a bell curve and a stylized graph referencing criterion-referenced grading.Instructors choose grading schemes for a variety of reasons. Some may select a method that reflects the way they were assessed as students; others may follow the lead of a mentor or senior faculty member in their department. To curve or not to curve is a big question. Understanding the motivations behind and reasons for curving or not curving grades can help instructors select the most appropriate grading schemes for their courses.

Curving defines grades according to the distribution of student scores. Grades are determined after all student scores for the assignment or test are assigned. Often called norm-referenced grading, curving assigns grades to students based on their performance relative to the class as a whole. Criterion-referenced grading (i.e., not curving) assigns grades without this reference. The instructor determines the threshold for grades before the assignment is submitted or the test is taken. For example, a 92 could be defined as the base threshold for an A, regardless of how many students score above or below the threshold.

Choosing to curve grades or use a criterion referenced grading system can affect the culture of competition and/or the students’ sense of faculty fairness in a class. Curving grades provides a way to standardize grades. If a department rotates faculty responsibility for teaching a course (such as a large introductory science course), norm-referenced grading can ensure that the distribution of grades is comparable from year-to-year. A course with multiple graders, such as a science lab that uses a fleet of graduate students in the grading, may also employ a norm referencing technique to standardize grades across sections. In this case, standardization across multiple graders should begin with training the graders. Curving grades should not be a substitute for instructing multiple graders how to assign grades based on a pre-defined rubric (The Innovative Instructor: “Calibrating Multiple Graders”).

In addition to standardizing grades, norm-referenced grading can enable faculty to design more challenging assignments that differentiate top performers who score significantly above the mean. More challenging assignments can skew the grade distribution; norm-referenced grading can then minimize the impact on the majority of students whose scores will likely be lower.

A critique of curving grades is that some students, no matter how well they perform, will be assigned a lower grade than they feel they deserve. Shouldn’t all students have an equal chance to earn an A? For this reason, some instructors do not pre-determine the distribution of grades. The benefit of using a criterion-referenced grading scheme is that it minimizes the sense of competition among students because they are not competing for a limited number of A’s or B’s. Their absolute score, not relative performance, determines their grade.

There are multiple ways to curve grades.

Image showing a bell curve.I. The Bell Curve

Normalizes scores using a statistical technique to reshape the distribution into a bell curve. An instructor then assigns a grade (e.g., C+) to the middle (median) score and determines grade thresholds based on the distance of scores from this reference point. A spreadsheet application like Excel can be used to normalize scores. CER staff can assist instructors in normalizing scores.

Image showing clumping.II. Clumping

The instructor creates a distribution of the scores and identifies clusters of scores separated by breaks in the distribution, then uses these gaps as a threshold for assigning grades.

 

Image showing quota system.III. Quota Systems

Often used in law schools, the instructor pre-determines the number of students who can earn each grade. The instructor applies these quotas after rank ordering student scores.

 

Image showing criterion-reference grading.IV. Criterion-reference grading

Using a pre-determined scale, assessments are based on clearly defined learning objectives and grading rubrics so students know the instructor’s expectations for an A, B, C, etc.

 

During the 2011 Robert Resnick Lecture at Johns Hopkins, Carl Wieman, Nobel Laureate and Associate Director for Science at the President’s Office of Science and Technology, argued that most instructors are not trained to create valid assessments of student learning. Curving can be used as a tool to adjust grades on a poorly designed test, but consistent use of curving should not be a substitute for designing assessments that accurately assess what the instructor wants students to learn by the end of the course. CER staff are happy to talk to faculty about defining learning objectives and/or strategies for designing challenging and accurate student assessment instruments.

Additional Resources

• Campbell, C. (2012). Learning-centered grading practices. Leadership. 41(5), 30-33

• Jacobson, N. (2001). A method for normalizing students’ scores when employing multiple gradersACM SIGCSE Bulletin. 33(4), 35-38.

Joe Champion’s Grading Transformation Spreadsheet. This spreadsheet automatically curves students’ scores after the instructor copies the scores into the spreadsheet and sets a variable defining the amount of curve.

Michael J. Reese, Associate Director
Center for Educational Resources


Image Sources: © Reid Sczerba, 2013.

Making Group Projects Work

Instructors often find that student engagement increases when active learning strategies are implemented in the classroom. One strategy is to assign problem-based collaborative learning projects. Well-conceived group projects help students develop critical thinking skills, learn how to work in teams, and apply theories learned in the course to real-life situations, producing an appreciation for how the knowledge gained will be useful once the class is over. The end result is a richer learning experience for the students.

Drawing of chairs around gears, screw driver tightening screw in center of second gear.

Students are more likely to appreciate and retain information when they see a correlation between course work and what they expect to experience as working professionals. Problem-based group projects typically require an array of cognitive skills, induce collaborative learning, and allow students to take ownership of the process. Moreover, students who learn to work in teams are better prepared for their future work environments.

Developing effective problem-based group projects requires assignments that reflect your course learning goals and incorporate course information, permit management of the student groups, and facilitate assessment of student progress. Advance planning and thoughtful strategies will go a long way towards ensuring successful implementation.

I. Setting Student Expectations

  • Weight the project fairly. You want your students to take the project seriously but you don’t want to weight the project so heavily that experimentation or risk-taking is stifled. Consider dividing the project into parts and grading each separately, so the team understands which aspects of the project went well and what needs improvement.
  • Discuss student roles and what’s needed. Get the students thinking about what will be required of their team and how they can organize and manage the project.  Emphasize the importance of a team schedule. Discuss the qualities of a good teammate so that students begin the project with mutual respect.
  • Start with small exercises as a warm up. Consider starting with a couple of smaller in-class team-based exercises so that students get used to working collaboratively

 II. Group generation methods

  • Allowing self-selection of teams can create problems. Students like to choose friends as teammates. Personal issues then carry over into the project, friendships may suffer, or the members may take the project less seriously, resulting in poor group performance.
  • Random selection is a reasonable alternative to student choice. This method is the fastest way to generate groups and more reflective of the real world. While random selection is convenient, consider ensuring diversity in each group to the extent possible.
  • Skills based alignment is ideal for creating groups. Identifying students’ strengths and weaknesses through in-class exercises can help establish well-rounded teams. As a part of the preparation for the project, generate a list of the skills needed, have the students identify their strong and weak areas, then group the students accordingly.

 III. Getting each student to contribute

  • Assign the students to roles. The difference between a dysfunctional group and a successful team lies in assigning roles. If students are assigned tasks with deadlines, they are more likely to take ownership and responsibility for completing their work as part of the team. Establishing roles can be a part of the group creation process. Avoid having students doing the same task for the entire length of the project. Instead, make the skill requirements for the team more conceptual. Use abstract concepts (Researcher or Synthesizer; Gatherer of Data or Analyzer of Data) so that broad expertise is required for each role.
  • Require that a different student present the team’s progress for each report. Make sure that each student has an opportunity to participate in an in-class presentation. Presenting their work is a skill that all students will use in the future. As it involves an understanding of all the parts of the project, these presentations by each team member also help to ensure successful group collaboration.

 IV. Assessing the team/individual in and outside of class

  • Have the students do evaluations. This can be done both during and after the project. Evaluations serve as reflective exercises for the students, allowing them to comment on how the process could be improved. Evaluations are particularly useful for gauging the team and individuals’ contributions for grading. Questions that require students to evaluate their own performance, the performance of each team member, and the team as a whole can provide insight into how the team functioned.
  • Schedule time for team work in class. Scheduling group work outside of class is always a challenge for students. By allowing time during class for team work, you also will have an opportunity to monitor student progress. This is a great way to gauge whether the students are experiencing difficulties and provide an opportunity for questions, clarifications, or assistance with problems. Some of the best learning comes from spontaneous discussion in class, and peer-learning can be extremely effective when students are working together to solve problems.
  • Ask for regular status updates. Starting class with a brief progress report from each team will bring up questions and concerns that can be addressed at once, eliminating redundancy and saving time.

V. Build in time for reflection

  • Reflection is key to learning from failure as well as success. Make sure you build in time for students to reflect on their progress. The best time to get the students to reflect on their experience is after the project during a debriefing discussion. Questions such as “What went well or not so well?” and “What would you do differently?” will enhance the opportunity for learning from their failures as well as their successes.

This post was adapted from The Innovative Instructor article series: http://www.cer.jhu.edu/ii/InnovInstruct-BP_MakingGroupProjectsWork.pdf

Pam Sheff,
Senior Lecturer, Center for Leadership Education, Johns Hopkins University
Pam Sheff is an award-winning writer and marketing communications consultant, with experience developing marketing, public relations and communications strategies for clients ranging from start-ups to large corporate, institutional and government organizations. Now a full-time lecturer in CLE, Pam has taught classes on business communications and entrepreneurship.

Leslie Kendrick,
Senior Lecturer, Center for Leadership Education, Johns Hopkins University
Leslie Kendrick has taught in the CLE program since 2002 and developed the five core marketing courses. She has 12 years of experience as a marketing practitioner. She has  worked for Harper & Row Publishers, Londontown Corporation, and Lippincott, Williams & Wilkins.


Image Source: © Reid Sczerba, 2012

Teaching with Images

Today’s students are surrounded by visual media in their everyday lives.  With their heavy use of the Internet, they are accustomed to accessing information in both textual and visual forms. The use of images in the classroom is a pedagogical strategy aimed at engaging students who have grown up in a media-rich environment. Digital technology has made images more readily available and easier to incorporate into teaching and learning materials.

Collage of images representing botany, biology, art, maps, geology, space.While teaching with images has been at the core of disciplines like art history for decades, all courses can benefit from the use of visual materials in class lectures, assignments, exercises, and resources. Images can be an effective way of presenting abstract concepts or groups of data. Instructors have reported that their use of images in the classroom has led to increased student interactivity and discussion. Teaching with images can also help develop students’ visual literacy skills, which contributes to their overall critical thinking skills and lifelong learning.

Finding images
While a Google Image Search, which draws from the many images available on the Web, can be useful for finding a specific or obscure image, there are problems associated with this method. Google retrieves images based on the text appearing nearby or on the image file names, often resulting in hundreds of unrelated results that have nothing to do with your subject. In addition, images posted to the Web may have incomplete or incorrect data attached and may have rights restrictions. Finally, the images found by Google are often of insufficient resolution for classroom projection or printing.

High quality images can be found through the Johns Hopkins Libraries, which provide access to a number of specialized image resources.  These databases provide downloadable, high-resolution images, include reliable information about the images, and allow advanced search capabilities. The resources include:

  • ARTstor, a database of over one million images in the arts, humanities, and social sciences.                                                            
  • Digital Image Database at JHU (DID@JHU) provides JHU faculty and students with access to thousands of images in a variety of subjects.   You can also request to add images for specific courses to the database.                       
  • Accunet/AP Multimedia Archive, a database of images, audio files and texts from 160 years of news and world events.
  • There are thousands of free, public domain images available through the U.S. government, easily searchable at the USA.gov website.                          
  • The Image Research Guide contains search tips, information about copyright and publications, and subject-specific web recommendations.                              
  • The CER has a list of websites containing freely available images and multimedia for educational use

Copyright & Permissions
While technology has made it easier than ever to download, manipulate, and re-publish images, it has also made it easier to inadvertently violate the copyrights associated with them.  The use of copyrighted images for educational purposes is allowed under the Fair Use exemptions to the US Copyright Act.  As there are several factors to take into account when determining whether your use of an image may be considered a fair use, it is a good idea to familiarize yourself with these criteria.  Many image databases and websites will stipulate the extent to which educational use of their materials is permitted.

There are resources available online to help guide you in determining whether your use qualifies under the Fair Use exemptions.

In addition, there are some best practices to follow to facilitate the legal and ethical use of images. These include:

  • Restrict online access to images to class members only.  Post images to a password-protected website or space, such as Blackboard, or in a shared folder in ARTstor or the Digital Image Database (DID@JHU).  If you’re not sure how to do this, consult your Research Services Librarian or a CER staff member.
  • If you are posting or publishing images to a forum that is open to members of the public, use public domain or Creative Commons-licensed images.

Uses of Images
Images will be more effective in the classroom if they are meaningfully integrated into course curricula.  Think of ways images can support the delivery of content, illustrate class themes, serve as primary research materials, or be built into assignments.

If you would like to learn more about integrating visual materials into your teaching, contact Macie Hall, Instructional Designer, CER: macie.hall@jhu.edu. The following are additional resources on how to use images in the curriculum:

Some ways you can introduce images into your course materials:

  • Presentations in PowerPoint, Keynote, the ARTstor Offline Viewer, or the DID@JHU image viewer
  • Blackboard resources
  • Other learning tools, such as the CER’s Timeline Creator or Interactive Map Tool
  • Primary source materials: photographs as historic documents, maps to inform urban planning and site architecture, diagrams and technical drawings to show the evolution of bridge design, or medical images to practice diagnosis
  • Class assignments: images can be powerful as illustrations, didactic materials, or stimulating starting points for structured writing exercises

Adrienne Lai, Emerging Technologies Services Librarian, North Carolina State University Libraries

Ms. Lai was the 2008/9 Art Libraries Society of North America Intern and did her internship at Sheridan Libraries and Department of the History of Art, Johns Hopkins University. She wrote the original Innovative Instructor print series article, Teaching with Images, adapted for this blog post. She completed Master’s Degrees in Library Studies and Archival Studies at the University of British Columbia in Vancouver, BC, Canada and holds a Master’s Degree in Fine Arts from the University of California, Irvine. She came to the library profession from several years of teaching art, art history, and cultural and media studies at art colleges in Canada and the US, and is interested in the possibilities of collaborative instructional efforts between libraries, faculty, and technology.


Image Source: Images in the collage were obtained from USA.gov Photos and Images and include images from NASA, National Gallery of Art, National Park Service, and National Agricultural Library, ARS, USDA.

 

Quick Tips: Managing Your Time Spent Online

Collage of logos for various online applications such as Facebook, YouTube, Pinterest, GMailWe spend an increasing amount of time plugged in to our various e-devices, doing research, monitoring the “interwebs”, interacting with friends, colleagues, and acquaintances in social media settings, blogging and reading other’s writings, texting, and answering emails. For faculty the influx of email particularly during the semester is often overwhelming. Students seem to expect an immediate response and may become frustrated if they don’t receive a prompt reply. They may not understand that you teach several courses and have hundreds of students and don’t know from their email which course they are in. What to do?

A recent article (March 26, 2013) in the  Chronicle of Higher Education, Managing Your Online Time by Paul Beaudoin, has some timely suggestions. While the article was written with faculty who are teaching fully online courses in mind, the suggestions offered will be equally useful to those instructors in more traditional, face to face environments. For example: it helps to start by managing student expectations on email responses at the outset, preferably in a well designed syllabus. You should let students know how quickly you will respond and during what hours. Frequent reminders that students should identify their class and section in all correspondence are helpful in gaining compliance. Look for tools in Blackboard (course management application) that will offer additional discussion outlets so that students can help others with the same questions. Create an FAQ, post it, and point to it when students ask the same questions repeatedly.

Check the article for more details and ideas.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: © Macie Hall, 2013

In Case You Missed It…

The Innovative Instructor has had several posts on flipping your classroom [2013 GSI Symposium Breakout Session 3: Flipping the Classroom and Flipping Your Class]. Two weeks ago the Johns Hopkins School of Public Health Center for Teaching and Learning (CTL) and the Office of Graduate Education held their annual Faculty Teaching Workshop.  This year’s topic was: Engaging Students in Active Learning: The Flipped Classroom and Other Strategies.

Johns Hopkins School of Public Health Center for Teaching and Learning Logo

So why are we telling you this now, after the fact? The good news is that recordings were made of the sessions in the half-day workshop and have been shared along with slides and other resources.

The goals of the workshop were to:

  • Articulate the purpose and value of incorporating active learning and flipping a class/session
  • Evaluate the usefulness of flipping
  • Compare several methods for active learning techniques
  • Implement active learning and/or classroom flipping techniques in your class

The program included:

  • The Active Learning Landscape, Dr. Stephen Gange, Professor of Epidemiology
  • Make Learning Un-Google-able: 21st Century Pedagogies that Will Transform Education, Dr. Marcio Oliveira, Asst. Dean for Educational Innovation, UMD School of Public Health
  • Promoting Active Learning in a Large “Lecture” Class; Experience from a First Try, Dr. Scott Zeger, Vice Provost for Research, JHU
  • Faculty Panel: Active Learning and Flipped Classrooms at JHSPH
  • Panelists: Dr. Elizabeth Golub, Epidemiology; Dr. Keri Althoff, Epidemiology; Beth Resnick, Public Health Practice; Dr. Nan Astone, Population, Family, and Reproductive Health; Moderator: Clark Shah-Nelson, Senior Instructional Designer, CTL

So check out the workshop recordings. And while you are in the neighborhood, the JHSPH Center for Teaching and Learning has many other great resources for teaching on their website.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: ©Johns Hopkins School of Public Health, CTL Toolkit Logo

 

Create an Online Space for Students to Collaborate

Working in groups can be a very positive experience for students; it allows them to take ownership of their learning, and they become active rather than passive learners. In addition to gaining a deeper understanding of the subject at hand, the interaction that students have with their peers is equally valuable. Students have the potential to develop life-long learning skills including critical thinking, problem solving, and decision making abilities, as well as social skills such as effective communication, negotiation, and conflict resolution. Instructors may help ensure the success of group work by following some of these simple guidelines:

  • Establish clear expectations of participation by group members.
  • Specify the roles and responsibilities needed within each group and have students delegate them.
  • Have group members assess each other at various times throughout the project/activity.
  • Periodically check to monitor group progress.
  • Use rubrics to assess both group and individual contributions.

For more on student collaborative work, see Barbara Gross Davis, Tools for Teaching, Jossey-Bass, 2001.)

Screen Shot: Blackboard Groups - Creating a GroupInstructors at JHU who have the option to use Blackboard (course management system), can create an online space for students to work collaboratively. The Groups Tool in Blackboard is a convenient way for instructors to create subsets of students for collaborative activity. Once created, group members have access to a number of communication and collaboration tools within Blackboard, as determined by the instructor. These tools include: a group discussion board, blog, wiki, journal, email tool, chat tool, a file exchange tool, and a task list.  The instructor has access to all group tools at all times.  This allows him/her to monitor each group’s activity as needed. The blog, wiki, and journal tools have the option of being graded; they are connected to the Blackboard grade center, so any grades entered are automatically transferred and recorded in the grade center.  Within these tools there is the option to grade each member of the group individually or grade the group as a whole. Blackboard groups can be created one at a time, or as a set. Members of groups are selected manually, with the instructor choosing students from a pre-populated list, or by using the self-enroll option, where students use a sign-up sheet to enroll themselves into a group. There is also a ‘random enrollment’ feature (if creating a group set), where Blackboard will randomly assign students to groups. This feature is often helpful in large lecture courses.

For more detailed information about using the Blackboard Groups Tool, please see the Groups Tool tutorial.

Amy Brusini, Course Management Training Specialist Center for Educational Resources


Image Source: Screen shot: Blackboard.

2013 GSI Symposium Breakout Session 5: Challenges and Rewards of Teaching in a MOOC

A Report from the Trenches

We’re continuing with our reports from the JHU Gateway Sciences Initiative (GSI) 2nd Annual Symposium on Excellence in Teaching and Learning in the Sciences.  Our final report is on the session “Challenges and Rewards of Teaching in a MOOC” presented by Brian Caffo, PhD Associate Professor of Biostatistics, Bloomberg School of Public Health; Kevin Frick, PhD, Professor of Health Policy and Management, Bloomberg School of Public Health; and Ira Gooding, OpenCourseWare Coordinator, Bloomberg School of Public Health.

This breakout session followed Daphne Koller’s (PhD, Co-founder of Coursera and Professor of Computer Science, Stanford University) keynote address: The Online Revolution: Education for Everyone. [Click on the link to see a video-cast of her talk.]

Sample Menu of JHSPH Coursera CoursesSince JHU began working with Coursera in July 2012, The Bloomberg School of Public Health (JHSPH) has developed and offered eight massive open online courses (MOOCs) on the Coursera platform. During this session, Ira Gooding, Educational Resource Coordinator in the JHSPH Center for Teaching and Learning, presented an overview of the School’s work so far, including enrollment information, completion rates, and practical insights about the development of MOOCs.

Gooding was joined by two MOOC instructors: Kevin Frick, Professor of Health Policy and Management, and Brian Caffo, Professor of Biostatistics. Drs. Frick and Caffo both shared details of their experiences teaching thousands of students via the MOOC model. During the question and answer portion, the panel was joined by two other MOOC instructors: Karen Charron of the Department of International Health and Roger Peng of the Department of Biostatistics. All agreed that MOOCs are a powerful tool for broadening access to high-quality educational experiences that can serve as a supplement or a gateway to more formal and traditional academic pursuits.

Many thanks to Ira Gooding for providing The Innovative Instructor with the notes from this session.

For more information on massive open online courses, see The Innovative Instructor post from January 8, 2013: The ABCs of MOOCS.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: Ira Gooding

2013 GSI Symposium Breakout Session 4: Student Engagement in Curriculum Development

A Report from the Trenches

We’re continuing with our reports from the JHU Gateway Sciences Initiative (GSI) 2nd Annual Symposium on Excellence in Teaching and Learning in the Sciences.  Next up is “Student Engagement in Curriculum Development: School of Medicine Medical Education Concentration” presented by Sarah Clever, MD, Assistant Professor of Medicine and Assistant Dean for Student Affairs, Johns Hopkins School of Medicine and her students Mark Fisher JHSoM ’14, Sara Fuhrhop, JHSoM ’14, Nikhil Jiwrajka, JHSoM ’15, and Eric Sankey, JHSoM ’15.

Please note that links to examples and explanations in the text below were added by CER staff and were not included in the breakout session presentation.

Dr. Clever identified physicians as having distinct roles as teachers as they interact with their peers, trainees, and patients. As well, graduates from the Johns Hopkins School of Medicine (JHSoM) often pursue careers in academic medicine. Specific training in medical education significantly enhances physicians’ skills as educators.

Based on an online needs assessment survey she conducted of 306 JHSoM students in June 2011 (86 responded), Dr. Clever felt that there was substantial student interest in the implementation of a medical education track including didactic teaching in medical education, hands-on curriculum design with a faculty mentor and evaluation of that curriculum, as well as presentation at a national meeting and or scholarly publication.

Nationally, clinician-educator tracks for residents and faculty are growing in popularity, but Student-as-Teacher programs for medical students are less common. The schools that have such programs include the University of Medicine and Dentistry of New Jersey (Distinction in Medical Education), University of Rochester (Medical Education Pathway), University of Chicago (Medical Education Track), University of Texas at San Antonio (MD with Distinction in Medical Education Program), and Stanford (Foundation in Medical Education). These institutions provided inspiration in developing the JHSoM program, and the discussions with medical students from these institutions about the strengths and weaknesses of their programs were particularly helpful.

The JHSoM Medical Education Concentration (MEC) started with a pilot in the fall of 2011 (for JHSoM Class of 2014 students) and opened formally for application to JHSoM class of 2015 students in May (at JHU, student self- select into this option). There are 20 participants in the first year. The Medical Education Concentration students apply in the 2nd half of the first year.  The second year is spent in a fall seminar series and on developing a curriculum module.  This is done individually in conjunction with a faculty member. Year three, they implement and obtain feedback. In year four the module is implemented a second time.  By the end of the program, students will create an original teaching module in the clinical or preclinical curriculum; collaborate with a faculty mentor using evidence-supported curriculum development methods; and implement and evaluate their module and teaching performance. The overarching goal of the JHSoM program is to teach students critical curriculum design and teaching skills.

The fall seminar series is taught by JHU faculty and includes topics such as: adult learning theory, conducting a needs assessment, writing quality goals and objectives, choosing educational methods, technology in education, constructing an effective PowerPoint presentation, small group facilitation, eliciting, giving, and receiving feedback, and learner and curriculum evaluation methods.

Some of the pilot cohort teaching modules were:

  • Conducting a follow up visit with chronic disease patients in the Longitudinal Clerkship
  • Conducting a well-child visit with pediatric patients in the Longitudinal Clerkship
  • Developing oral presentation skills in the Longitudinal Clerkship
  • Incorporating inter-professional education modules into the Pediatrics Clerkship
  • Surgical skills education for first year medical students.

Refinements to the Medical Education Concentration in the second year have included some changes to the seminar series, integration with other SoM education initiatives, and improving MEC infrastructure (i.e., Blackboard components used for the MEC).

In the future, Dr. Clever hopes to develop a system to track students’ project progress, create a handbook for MEC leadership, work on pre-assessment for prospective participants, and to collaborate with similar programs at other institutions.

Dr. Clever’s presentation ended with these questions for discussion among the breakout session participants:

  1. How can student involvement in curriculum development benefit the Gateway Sciences?
  2. What are the implications of undergraduate student involvement in teaching and/or curriculum development for courses that are already well established?
  3. How can we better involve students in the learning process?

The discussion centered on transferring this experience to the Gateway Sciences Initiative.  Although participants did not feel that freshman and sophomore students would be able to effectively have a role in curriculum design, peer-teaching or developing focused instructional modules could help an upperclassman to gain a greater understanding of a concept or to understand its application to higher level courses.

The consensus was that these SoM medical education concentration students could be role models for pre-med students.  They also could provide insight to faculty teaching undergraduates about the skills needed in medical school (at least the JHU model).  Everyone agreed this was a session that showed how cross- University collaboration could benefit all involved.

For more on the development and implementation of the MEC program see Dr. Sarah Clever’s presentation for the Johns Hopkins Medicine Institute for Excellence in Education Grand Rounds, March 14, 2012: Learners to Educators: Development  and Implementation of a Medical Education Curriculum [JHED ID required].

Many thanks to Melissa West for providing The Innovative Instructor with the notes she took during this session.

Macie Hall, Senior Instructional Designer
Center for Educational Resources


Image Source: Dr. Sarah Clever

 

2013 GSI Symposium Breakout Session 3: Flipping the Classroom

A Report from the Trenches

We’re continuing with our reports from the JHU Gateway Sciences Initiative (GSI) 2nd Annual Symposium on Excellence in Teaching and Learning in the Sciences. Next up is “Flipping the Classroom: How to Do It Conceptually and Technologically” presented by Michael Falk, Ph.D., Associate Professor of Material Sciences and Engineering  and Brian Cole, Senior Information Technology Specialist, Center for Educational Resources.

Please note that links to examples and explanations in the text below were added by CER staff and were not included in the breakout session presentation.

Instructor with students at computers

For the past several years Professor Michael Falk has “flipped” his course EN.510.202 –Computation and Programming for Materials Scientists and Engineers.  [See the recent Innovative Instructor post on Flipping Your Class.] The purpose of Falk’s class is to teach algorithm development and programming in the context of materials science and engineering.  The class size ranges between 20 and 30 students, and Professor Falk has one Teaching Assistant for the class.

Professor Falk outlined the logistics for the students taking the course. They are required to watch a video of a lecture-style presentation he has posted on his Blackboard course site, and then take a quiz on the content presented in the podcast, before coming to class. The quizzes ensure that the students will watch the lecture and are held accountable for the information presented. Once in class, Falk has the students engage in an interactive experience, such as writing a mini-program, based on the material from the presentation. He noted that he has not found making the podcasts difficult, but creating in-class active learning experiences for his students has been more challenging. He spends a great deal of time developing in-class exercises that will build cumulatively. He also wants students to be able to get enough from the classroom activity to continue work on their own.

For assessment purposes he has students take a survey at the beginning of the semester and at the end of the semester to determine learning gains. Preliminary data indicate that the class increases the ability of students to program, that students showed increased perception in their abilities, as well as an increased intention to use programming in the future.

Brian Cole discussed and demonstrated the technology behind the flipped classroom.  Falk uses the software application ClassSpot, which allows students to share their work on the classroom’s main projection screen, to edit common code during class.  Cole described using Audacity, Adobe Connect, Adobe Presenter, and QuickTime on Macs to create the video recordings.  He mentioned that a faculty member could also use an appropriate pre-recorded lecture from a trusted source. Falk uses ScreenFlow to make his presentations; however, Johns Hopkins does not have a license for this software. Adobe Captivate is another possibility. It is very powerful but has a steeper learning curve.

The follow questions were raised and answered during the session:

Q – Could this method be used to flip a few modules as opposed to the entire course?
A – Undergrads don’t like change, so it would probably be better to do the whole course.

Q – Can students watch the podcasts over and over?
A – Yes.

Q – Where is the textbook in all of this? Could you replace your podcasts with readings from a textbook?
A – There are reading assignments in addition to the videos. In my experience, students prefer a human face, a talking head, over reading a textbook.

Q – How do students reach you if class time is dedicated to working on problems?
A – I encourage students to use the class Blackboard discussion board. [Note: The flipped class structure  doesn’t prevent students from talking to the faculty member, and Falk also has office hours.]

Q – Did you scale back student work [outside of class] since more time spent watching podcasts?
A – Yes – most of the traditional homework is done in class.

Q – Are there tests?
A – Yes.

Q- How important are quizzes to making the flipped course work?
A – Very important. Students are very grade oriented so having quizzes, tests, and exams matters. Quizzes are great motivators for getting students to watch the videos.

Amy Brusini, Course Management Training Specialist
Center for Educational Resources


Image Source: Microsoft Clip Art