Quick Tips: Teaching in Challenging Times and Facilitating Difficult Discussions

In the days following the election faculty and students across the country were faced with Image of a stylized human figure peering into the opening of a large circular maze.teaching and learning in a climate that made both activities difficult. The issues that divided our nation could not be ignored in the classroom. The Center for Teaching at Vanderbilt University published a thoughtful guide for faculty: Teaching in Response to the Election, by Joe Bandy, CFT Assistant Director. The suggestions are practical, reference additional resources, and are useful not just today, but in thinking about supporting students in general. Three other CFT guides are referenced: Teaching in Times of Crisis for when “communities are united in grief or trauma,” Difficult Dialogues will be useful whenever topics of discussion in the classroom touch on “hot button” issues, and the guide for Increasing Inclusivity in the Classroom is relevant at all times.

We welcome your suggestions in the comments for facilitating difficult discussions and teaching in challenging times.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Pixabay.com

Lunch and Learn: Flipped courses: What is the purpose? What are the strategies?

Logo for Lunch and Learn program showing the words Lunch and Learn in orange with a fork above and a pen below the lettering. Faculty Conversations on Teaching at the bottom.On Thursday, October 20, the Center for Educational Resources (CER) hosted the first Lunch and Learn—Faculty Conversations on Teaching for the 2016-1017 academic year. A panel of faculty including Avanti Athreya, Assistant Research Professor Applied Mathematics & Statistics; Michael Falk, Professor Materials Science & Engineering; Bob Leheny, Professor Physics & Astronomy; and Soojin Park, Assistant Professor Cognitive Science; spoke briefly on their experiences and engaged in a lively discussion with attendees on Flipped courses: What is the purpose?  What are the strategies?

Avanti Athreya described flipping a large lecture course in Fall 2015 with her colleague, Dan Naiman, Professor, Applied Math & Statistics. The 4 credit course, Statistical Analysis I had previously met four times a week for 50 minutes – three lectures by faculty and one small-group meeting led by a TA.  Starting in Fall 2015, students watched several short videos (5-15 minutes each) before the week started.  The videos were created by Athreya and Naiman using Camtasia. Students then met once for a 75-minute lecture with the instructor and twice in small-groups with a TA.  During these sessions students, working in teams of three, solved problems with a TA available for help as needed.  Clicker quizzes were given at the beginning of each lecture to motivate students to watch the videos. Athreya noted that clear learning objectives were listed at the beginning of each video. Challenges included initial resistance from the students (she stated that there had been less of that this semester, the second iteration of the flipped course), and that students often need alternative explanation for concepts. Typically, the videos cover an idea in one way. In a lecture, the instructor noting confusion may offer another explanation for clarification.

Soojin Park co-teaches Cognitive Neuroscience: Exploring the Living Brain with Brenda Rapp, Professor, Cognitive Science. This 3 credit course has an enrollment on average of 250 students. Park and Rapp flipped their course in Spring 2016, with a goal of putting more emphasis on student exploration. They videotaped scripted lectures (these videos were shorter and more focused than the lectures in the traditional course) and posted them on Blackboard. Students took quizzes on the video content. Students met twice a week in sections of about 25. One section was structured as a review section, the other as an active learning section. The challenge was to create the active learning activities. They decided to emphasize practical skills, such as exercises to learn spatial areas of the brain using 3-D software. These activities were all group based. There were worksheets for each session. For the final project, students developed a mock NIH proposal. Park and Rapp found a 5% learning improvement on the final exam (the questions were reused from the previous year to allow comparison) as well as higher course evaluations.

Bob Leheny reported that he is in the fourth year of teaching an active-learning version of Introduction to Physical Sciences, which incorporates a flipped classroom model. The course serves 700 students each semester. Before class, students watch videos that were developed at the University of Illinois. Leheny noted that there is a great deal of video content already developed for teaching introductory physics, so the faculty developing the course here were spared having to create their own. Faculty are able to track how much time students spend watching the videos. The course was developed with funding from a JHU Gateway Sciences Initiative grant, which included the design and implementation of an active learning classroom that seats 80 students. In the classroom, students review the video content, then work collaboratively in groups of three on exercises and experiments that explore the topic for the day. The course is supported by three graduate student TAs and four undergraduate TAs. Leheny said that one of the challenges was time management in the active learning setting. He compared the instructor and TAs to “waiters working the tables” where students were doing the activities and exercises. There is a constant monitoring of where students are and what they need.

Michael Falk was an early adopter of flipping the course. He now flips two courses: his undergraduate Computation and Programming for Materials Scientists and Engineers, with an enrollment of 35, and a graduate course, Thermodynamics of Materials. For the undergraduate class he created his own videos using Screen Flow. Students take quizzes on the video content before class. In class students work through exercises collaboratively. Falk uses Class Spot to facilitate this work. Class Spot allows screen sharing; students can see how their classmates worked out solutions to problems. For his graduate course in thermodynamics, Falk made short, Khan Academy-style videos using Quick Time. The students watch the videos before class and use class time for problem solving. He also made use of an application called Perusall for annotation exercises. His found in general that his students like it better if there is a short recap of the video material at the beginning of class. Falk feels that the biggest challenge with flipping is finding meaningful activities for class time.

Some key points covered during discussion included:

  1. Making sure that students aren’t assigned too much to do outside of class–videos should replace some of the reading or other homework assignments.
  2. It may be necessary to incentivize students to watch the videos. This can be in the form of quizzes.
  3. If group or collaborative work is done in class, follow best practices for creating groups. Groups of three are ideal. It is best not to have two males and one female in a group as has been shown in research on gender construction of teams. Group work presents valuable experiences for students. For those going into STEM fields, collaboration will be the norm, thus is a good skill to acquire. Group work can help minimize the negative aspects of competition in a classroom.
  4. Base in-class activities on the student learning goals for the course.
  5. Keep videos short, even, or especially when using a lecture-style delivery of the content. Scripting of lecture delivery was advised, as well as adopting a modular concept. Each lecture video should focus on one idea.
  6. Faculty who had flipped their courses noted that preparation for the initial offering of the course took a tremendous investment of time, but that the results had been worth the effort involved.
  7. Several faculty from the humanities discussed whether a flipped model could be used in their class situations, and specifically whether video delivery offered any advantage over reading a text. Certainly offering a variety of learning modalities can be valuable for students coming to a course with different backgrounds and understanding. A humanities course might not benefit from being flipped in total, but having students work together in class to develop specific skills, such as close reading, could prove valuable.

In all, the session was interesting and informative. If you are an instructor on the Homewood campus, staff in the Center for Educational Resources will be happy to talk with you about flipping a course.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Lunch and Learn logo by Reid Sczerba, Center for Educational Resources.

PowerPoint in the Classroom

Do you use PowerPoint (or Keynote, Prezi or other presentation software) as part of your teaching? If yes, why? This is not meant to be a question that puts you on the defensive, rather to ask you to reflect on how the use of a presentation application enhances your teaching and fits in with other strategies to meet your learning objectives for the class.

Cartoon-like drawing of a presenter showing a slide to a sleeping/snoring audience.It’s been almost three years since The Innovative Instructor wrote on using PowerPoint in the classroom. See Polishing your PowerPoints, a post that covered some tips for creating more effective slides, citing a book by Nancy Duarte called Slide:ology [Nancy Duarte, Slide:ology,  O’Reilly Media, Inc., 2008].

A key point from that post to reiterate: “Duarte reports on research showing that listening and reading are conflicting cognitive processes, meaning that your audience can either read your slides or listen to you; they cannot do both at the same time. However, our brains can handle simultaneous listening to a speaker and seeing relevant visual material.”

It’s important to keep this in mind, particularly if your slides are text heavy. Your students will be scrambling to copy the text verbatim without actually processing what is being said. On the other hand, if your slides are used as prompts (presenting questions or key points with minimal text) or if you don’t use slides at all, students will have to listen to what you are saying, and summarize those concepts in their notes. This process will enhance their understanding of the material.

An article in Focus on Teaching from August 1, 2012 by Maryellen Weimer, PhD asks us to consider Does PowerPoint Help or Hinder Learning? Weimer references a survey of students on the use of PowerPoint by their instructors. A majority of students reported that all or most of their instructors used PowerPoint. Weimer’s expresses the concern that “Eighty-two percent [of students surveyed] said they “always,” “almost always,” or “usually” copy the information on the slides.” She asks, “Does copying down content word-for-word develop the skills needed to organize material on your own? Does it expedite understanding the relationships between ideas? Does it set students up to master the material or to simply memorize it?” Further, she notes that PowerPoint slides that serve as an outline or use bulleted lists may “oversimplify” complex content, encourage passivity, and limit critical thinking.

Four journal articles from Cell Biology Education on PowerPoint in the Classroom (2004 Fall) present different points of view (POV) on the use of PowerPoint. Although written over a decade ago, most of the concepts are still relevant. Be aware that some of the links are no longer working. From the introduction to the series:

Four POVs are presented: 1) David Keefe and James Willett provide their case why PowerPoint is an ideal teaching software. Keefe is an educational researcher at the Center for Technology in Learning at SRI International. Willett is a professor at George Mason University in the Departments of Microbial and Molecular Bioscience; as well as Bioinformatics and Computational Biology. 2) Kim McDonald highlights the causes of PowerPointlessness, a term which indicates the frequent use of PowerPoint as a crutch rather than a tool. She is a Bioscience Educator at the Shodor Education Foundation, Inc. 3) Diana Voss asks readers if PowerPoint is really necessary to present the material effectively or not. Voss is a Instructional Computing Support Specialist at SUNY Stony Brook. 4) Cynthia Lanius takes a light-hearted approach to ask whether PowerPoint is a technological improvement or just a change of pace for teacher and student presentations. Lanius is a Technology Integration Specialist in the Sinton (Texas) Independent School District.

These are short, op-ed style, pieces that will further stimulate your thinking on using presentation software in your teaching.

For more humorous, but none-the-less thought provoking approach, see Rebecca Shuman’s anti-PowerPoint tirade featured in Slate (March 7, 2014): PowerPointless. With the tagline, “Digital slideshows are the scourge of higher education,” Shuman reminds us that “A presentation, believe it or not, is the opening move of a conversation—not the entire conversation.”

Shuman offers a practical guide for those, like her, who do use presentation software, but seek to avoid abusing it. “It is with a few techniques and a little attention, possible to ensure that your presentations rest in the slim minority that are truly interactive and actually help your audience learn.” Speaking.io, the website Shuman references, discusses the use of presentation software broadly, not just for academics, but has many useful ideas and tips. 

For a resource specific to academic use, see the University of Central Florida’s Faculty Center for Teaching & Learning’s Effective Use of PowerPoint. The experts at the Center examine the advantages and challenges of using presentation software in the classroom, suggest approaches to take, and discuss in detail using PowerPoint for case studies, with clickers, as worksheets, for online (think flipped classes as well) teaching, the of use presenter view, and demonstrate best practices for delivery and content construction.

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image Source: CC Oliver Tacke https://www.flickr.com/photos/otacke/12635014673/

To Curve or Not to Curve Revisited

Yellow traffic signs showing a bell curve and a stylized graph referencing criterion-referenced grading.The practice of normalizing grades, more popularly known as curving, was a subject of an Innovative Instructor post, To Curve or Not to Curve on May 13, 2013. That article discussed both norm-referenced grading (curving) and criterion-referenced grading (not curving). As the practice of curving has become more controversial in recent years, an op-ed piece in this past Sunday’s New York Times caught my eye. In Why We Should Stop Grading Students on a Curve (The New York Times Sunday Review, September 10, 2016), Adam Grant argues that grade deflation, which occurs when teachers use a curve, is more worrisome than grade inflation. First, by limiting the number of students who can excel, other students who may have mastered the course content are unfairly punished. Second, curving creates a “toxic” environment, a “hypercompetitive culture” where one student’s success means another’s failure.

Grant, a professor of psychology at the Wharton School at the University of Pennsylvania, cites evidence that curving is a “disincentive to study.” Taking observations from his work as an organizational psychologist and applying those in his classroom, Grant has found he could both disrupt the culture of cutthroat competition and get students to work together as a team to prepare for exams. Teamwork has numerous advantages in both the classroom and the workplace as Grant details. Another important aspect is “…that one of the best ways to learn something is to teach it.” When students study together for an exam they benefit from each other’s strengths and expertise. Grant details the methods he used in constructing the exams and how his students have leveraged teamwork to improve their scores on course assessments. One device he uses is a Who Wants to Be a Millionaire-type “lifeline” for students taking the final exam. While his particular approaches may not be suitable for your teaching, the article provides food for thought.

Because I am not advocating for one way of grading over another, but rather encouraging instructors to think about why they are taking a particular approach and whether it is the best solution, I’d like to present a counter argument. In praise of grading on a curve by Eugene Volokh appeared in The Washington Post on February 9, 2015. “Eugene Volokh teaches free speech law, religious freedom law, church-state relations law, a First Amendment Amicus Brief Clinic, and tort law, at UCLA School of Law, where he has also often taught copyright law, criminal law, and a seminar on firearms regulation policy.” He counters some of the standard arguments against curving by pointing out that students and exams will vary from year to year making it difficult to draw consistent lines between, say an A- and B+ exam. This may be even more difficult for a less experienced teacher. Volokh also believes in the value of the curve for reducing the pressure to inflate grades. He points out that competing law schools tend to align their curves, making it an accepted practice for law school faculty to curve. As well, he suggests some tweaks to curving that strengthen its application.

As was pointed out in the earlier post, curving is often used in large lecture or lab courses that may have multiple sections and graders, as it provides a way to standardize grades. However, that issue may be resolved by instructing multiple graders how to assign grades based on a rubric. See The Innovative Instructor on creating rubrics and calibrating multiple graders.

Designing effective assessments is another important skill for instructors to learn, and one that can eliminate the need to use curving to adjust grades on a poorly conceived test. A good place to start is Brown University’s Harriet W. Sheridan Center for Teaching and Learning webpages on designing assessments where you will find resources compiled from a number of Teaching and Learning Centers on designing “assessments that promote and measure student learning.”  The topics include: Classroom Assessment and Feedback, Quizzes, Tests and Exams, Homework Assignments and Problem Sets, Writing Assignments, Student Presentations, Group Projects and Presentations, Labs, and Field Work.

Macie Hall, Instructional Designer
Center for Educational Resources


Image Source: © Reid Sczerba, 2013.

 

 

Considerations for Digital Assignments

Image of the handout on considerations for digital assignments

My colleague in the Center for Educational Resources, Reid Sczerba, and I often consult with faculty who are looking for alternative assignments to the traditional research paper. Examples of such assignments include oral presentations, digital and print poster presentations, virtual exhibitions, using timelines and mapping tools to explore temporal and spatial relationships, blogging, creating videos or podcasts, and building web pages or websites.

Reid, who is a graphic designer and multimedia specialist, put together a handy chart to help faculty think about these assignments in advance of a face-to-face consultation with us. A PDF version of this handout is available for your convenience. The text from the chart is reprinted below.

Learning objectives
♦ Have you determined your learning objectives for this assignment? Deciding what you would like your students to learn or be able to do helps to frame the parameters of your assignment. http://www.cer.jhu.edu/ii/InnovInstruct-BP_learning-objectives.pdf

Type of assignment
♦Will there be analysis and interpretation of a topic or topics to produce a text-based and/or visual-based project? Consider alternatives to a traditional research paper.
http://ii.library.jhu.edu/2016/04/08/lunch-and-learn-alternatives-to-the-research-paper/
♦Will there be a need to document objects or materials for a catalog, exhibition, or repository? Defining meaningful metadata and the characteristics of research materials will be important considerations.

Access and visibility
♦Will you want the students’ work to be made open to the public, seen just at JHU, or shared only with the class? Decide up front whether to have students’ work be public or private in order to get their consent and choose the best platform for access.
♦ Will they be working with copyrighted materials? The fair use section of the Copyright Act may provide some latitude, but not all educational uses are fair use. http://www.arl.org/focus-areas/copyright-ip

Collaboration
♦Will you want students to work collaboratively as a class, in small groups, or individually?
Group work has many benefits but there are challenges for assessment and in ensuring that students do their fair share of the work.
http://www.cer.jhu.edu/ii/InnovInstruct-BP_MakingGroupProjectsWork.pdf
♦ Will you want the students’ work to be visible to others in the class or private to themselves or their group?
Consider adding a peer review component to the assignment to help the students think critically about their work.
http://www.cer.jhu.edu/ii/InnovInstruct-Ped_peerinstruction.pdf

Format
♦ Will you want your students to have a choice of media to express their research or will all students use the same solution?
An open-ended choice of format could allow students to play to their strengths, leading to creativity. On the other hand, too many choices can be daunting for some, and it may be challenging to assess different projects equally.
♦ What would be the ideal presentation of the student’s work?

• spatially arranged content (mapping, exhibition)
• temporally arranged content (timeline)
• narrative (website, blog)
• oral presentation
• visual presentation (poster, video)

Formats for digital assignments are not limited to this list. More than one approach can be used if the result fulfills the learning objectives for the assignment.

Some of the solutions that we have recommended to faculty in the past are OmekaOmeka NeatlineTimeline JSPanopto (JHU), Reveal (JHU), Google tools (Google SitesGoogle Maps, Google Docs), Voicethread (JHU), and WordPress.

*************************************************************************************************

Reid Sczerba, Multimedia Development Specialist
Center for Educational Resources

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Image of the handout created by Reid Sczerba

The Fallacy of Fairness

Poster for Dr. Jo Handelsman seminar held on March 8, 2016.Back in March (March 8, 2016), Dr. Jo Handelsman, Associate Director for Science at the White House Office of Science and Technology Policy, and (see more here) Howard Hughes Medical Institute Professor and Frederick Phineas Rose Professor in the Department of Molecular, Cellular and Developmental Biology at Yale University, gave a seminar at Johns Hopkins. The talk, made possible through a Diversity Innovation Grant from the Johns Hopkins Diversity Leadership Council, was titled The Fallacy of Fairness: Confronting Bias in Academic Science. We are fortunate that a video of the talk is now available. Handelsman, who has done important research on women and minorities in STEM fields, discusses the strengths that diversity offers, scientists’ claim to meritocracy, how unconscious bias weakens the STEM pipeline, and offers actions and policies to confront and address bias.

The video is 80 minutes long including introductions and the question and answer session that followed Handelsman’s talk. Among the many thought-provoking points Handelsman made, it was particularly interesting to learn that women are equally as likely as men to be unconsciously biased towards other women when it comes to hiring, mentoring, and awarding salaries. Moreover, the unconscious bias holds across all types of educational. Although Handelsman focuses on STEM disciplines, the message is an important one for all in the academy.

I’d also like to point you to the blog edited by Dr. Karen Fleming, Professor in the Johns Hopkins University Department of Biophysics, Overcoming Bias & Barriers to Women in Science / Achieving Gender Equity in Science. Dr. Fleming was one of the organizers of the Handelsman seminar, along with JHU Department of Chemical and Biomolecular Engineering Professor Jeffry J. Gray, and Julia Koehler Leman, postdoctoral fellow, and Dominic Scalise,  graduate student, both in the Department of Chemical and Biomolecular Engineering.  Also of interest on this topic is the video of a talk by Dr. Fleming given at the October 2014 JHU Diversity Conference: Achieving Gender Equity in STEM: How Can Women Move Beyond Bias & Barriers?

**********************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Poster for Dr. Jo Handlesman JHU seminar, March 8, 2016.

 

How Do You Get Your Students to Do the Assigned Reading?

Female with glasses reading a textbook.Recently I had a discussion with faculty about reading assignments. The perennial problem? Faculty assign but students don’t read. The faculty I work with aren’t the only ones facing this problem. David Gooblar, They Haven’t Done the Reading. Again. [The Chronicle of Higher Education, Vitae, Pedagogy Unbound, September 24, 2014], starts off by citing research showing that on a given day in class 70% of the students will not have done the assigned reading. He dismisses the use of quizzes as punitive and time-consuming. What to do instead?

Gooblar suggests starting by making sure that the assigned reading is really necessary. Students prioritize their work and won’t bother with the reading if they feel it is not essential. Make sure that your required reading aligns with course objectives and can be completed in a reasonable amount of time. Show students that the reading is, indeed, necessary. At the end of class preview the upcoming reading assignment, explain how it fits into the material to be covered in the next class, and give the students some questions to consider as they do the reading.

Handouts created for the students can be useful, Gooblar writes. These can be specific to each reading assignment or more general to be used for all the readings. Questions posed in handouts help prepare students for in-class discussion. End by asking “What one question would you like me to answer in class about the reading?”  Instead of a quiz, create a questionnaire to gauge problems students are having with the reading. “By asking questions that point to the use you’ll make of the reading, you’ll underline the fact that the reading is indeed integral to the course. You’ll also provide yourself with useful information to guide your lecture or class discussion.” These questionnaires can be used to monitor students’ completion of the reading.

Finally, Gooblar advises making use of the information from the reading assignments in class without repeating it in detail. Why should students spend their time reading if you are going to tell them what they need to know? You want the reading to serve as a foundation for in-class discussion or use lecture time to build on the ideas presented in the reading.

A special report from Faculty Focus on Teaching offers 11 Strategies for Getting Students to Read What’s Assigned [Magna Publications, July 2010]. I’ve summarized the main point(s) of each one after the title, but the articles are all short, so it won’t take long to review the full report.

  • Enhancing Students’ Readiness to Learn: Being explicit with your students about expectations [concerning the reading assignments] and assessing their preparedness improves motivation and learning outcomes
  • What Textbook Reading Teaches Students: Make sure your students understand why you are assigning textbook readings and how it relates to other course content. Don’t repeat the exact information in class and thus make it easy for students to skip the reading.
  • Getting Students to Read: Design your course so that students must do the reading to do well. Create assignments that require more than passive reading, structuring these so that students must engage with and respond to the reading.
  • Helping Students Use Their Textbooks More Effectively: Suggestions in this article include giving explicit requirements, introducing the text in class, and offering students effective textbook study practices.
  • Still More on Developing Reading Skills: Quizzing is not an effective motivator for students to complete reading assignments and may encourage surface reading. Assignments, such as reading responses, that structure reading for the students work better.
  • Text Highlighting: Helping Students Understand What They Read: Have students bring highlighted/annotated/underlined texts to class and share their reasons for the markup. “In this way, the types of thinking that accompanies purposeful, active reading become more apparent.”
  • When Students Don’t Do the Reading: Students won’t read if they know that the material will be closely reviewed during lecture. Let students know that the reading is necessary background that will be referenced and built on.
  • Pre-Reading Strategies: Connecting Expert Understanding and Novice Learning: Examples of scaffolding or structuring the reading experience for students, especially underclassmen, by building a framework for topics, giving them reading strategies, making connections to the course content, identifying roadblocks to understanding, and uncovering the structure of the argument presented.
  • The Use of Reading Lists: The article looks at a British study on how students can be motivated to read outside of required texts for a course. The answer lies in taking time to develop student reading skills and raising interesting, challenging questions whose answers are to be found in the readings.
  • The Student-Accessible Reading List: Structured and discussion-specific lists (of non-required texts) with a limited number of readings are more accessible to students. Annotations direct students to readings that will be useful to them.
  • How to Get Your Students to Read What’s Assigned: The final article provides a nice summary of ideas. Introduce the textbook and encourage use of supplemental materials the textbook provides, identify discipline-specific terminology, have students mark-up readings, structure the reading by providing questions to be answered ahead of class, use the textbook in class to emphasize its importance, teach students to ask questions about the reading, link the reading to exams, and identify and work with students who need help with reading.

Faculty I talked with pointed out that students coming into colleges and universities today may be less prepared to take on reading assignments than in the past. In high schools today many students are being taught to the test and may be associating reading with learning facts, which often means reading on the surface without understanding the big picture. If you teach a course that relies heavily on reading assignments, consider taking time at the beginning of the semester to provide some in-class training on the best practices and strategies that your students should adopt. Have the students scan a text, skimming the abstract or first paragraphs and conclusion, noting the section headings, illustrations and or graphics. Based on this preview, have them frame several questions that they have about the content, before they do a thorough reading. Discuss the value of taking notes and what those notes should cover. Ask them what they highlight when they read and why. Remind your students that they should be bringing questions to class about their reading assignments.

If you have a solution that you’ve used to encourage students to do the reading, please share it with us in the comments.

*********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Pixabay.com

 

Report on the JHU Symposium on Excellence in Teaching and Learning in the Sciences

On January 11th and 12th Johns Hopkins University held its fourth Symposium on Excellence in Teaching and Learning in the Sciences. The event was part of a two-day symposium co-sponsored by the Science of Learning Institute and the Gateway Sciences Initiative (GSI). The first day highlighted cognitive learning research; theLogo for the JHU Gateway Sciences Initiative second day examined the practical application of techniques, programs, tools, and strategies that promote gateway science learning. The objective was to explore recent findings about how humans learn and pair those findings with the latest thinking on teaching strategies that work.  Four hundred people attended over the course of the two days; approximately 80% from Johns Hopkins University, with representation from all divisions and 20% from other universities, K-12 school systems, organizations, and companies. Videos of the presentations from the January 12th presentations are now available.

The GSI program included four guest speakers and three Johns Hopkins speakers. David Asai, Senior Director of Science Education at Howard Hughes Medical Institute, argued persuasively for the impact of diversity and inclusion as essential to scientific excellence.  He said that while linear interventions (i.e., summer bridge activities, research experiences, remedial courses, and mentoring/advising programs) can be effective at times, they are not capable of scaling to support the exponential change needed to mobilize a diverse group of problem solvers prepared to address the difficult and complex problems of the 21st Century.  He asked audience participants to consider this:  “Rather than developing programs to ‘fix the student’ and measuring success by counting participants, how can we change the capacity of the institution to create an inclusive campus climate and leverage the strengths of diversity?” [video]

Sheri Sheppard, professor of mechanical engineering at Stanford University, discussed learning objectives and course design in her presentation: Cooking up the modern undergraduate engineering education—learning objectives are a key ingredient [video].

Eileen Haase, senior lecturer in biomedical engineering at Johns Hopkins, discussed the development of the biomedical engineering design studio from the perspective of both active learning classroom space and curriculum [video]. Evidenced-based approaches to curriculum reform and assessment was the topic addressed by Melanie Cooper, the Lappan-Phillips Chair of Science Education at Michigan State University [video]. Tyrel McQueen, associate professor of chemistry at Johns Hopkins talked about his experience with discovery-driven experiential learning in a report on the chemical structure and bonding laboratory, a new course developed for advanced freshman [video]. Also from Hopkins, Robert Leheny, professor of physics, spoke on his work in the development of an active-learning- based course in introductory physics [video].

Steven Luck, professor of psychology at the University of California at Davis, provided an informative and inspiring conclusion to the day with his presentation of the methods, benefits, challenges, and assessment recommendations for how to transform a traditional large lecture course into a hybrid format [video].

Also of interest may be the videos of the presentations from the Science of Learning Symposium on January 11, 2016. Speakers included: Ed Connor, Johns Hopkins University; Jason Eisner, Johns Hopkins University; Richard Huganir, Johns Hopkins University; Katherine Kinzler, University of Chicago; Bruce McCandliss, Stanford University; Elissa Newport, Georgetown University; Jonathan Plucker, University of Connecticut; Brenda Rapp, Johns Hopkins University; and Alan Yuille, Johns Hopkins University.

*********************************************************************************************************

Kelly Clark, Program Manager
Center for Educational Resources

Image Source: JHU Gateway Sciences Initiative logo

Small Changes That Can Make a Big Difference in Teaching

For many of us this time of year marks the beginning of a new semester. Even if your classes have already started up, it’s not too late to consider some tips for improving the teaching and learning experience in your classroom. James M. Lang, professor of English and director of the Center for Teaching Excellence at Assumption College in Worcester, Massachusetts, has written two articles in a proposed series for The Chronicle of Higher Education “…making the argument in this space that small changes to our teaching — in things like course design, classroom practices, and communication with students — can have a powerful impact on student learning.”

Students given presentation to a class.

CC Photo by Creative Services: http://spirit.gmu.edu/wp-content/uploads/2013/05/student-presentation-ncc.jpg

In the first article, Small Changes in Teaching: The Minutes Before Class: 3 simple ways you can set up the day’s learning before the metaphorical bell rings [CHE November 15, 2015], Lang states that “The more time I spend with students in that brief space before the start of class, the more I recognize that those warm-up minutes actually represent a fertile opportunity.” He recommends chatting briefly with students as they come into the classroom. By informally rotating through the roster of students, the instructor can create connections. The results can be striking—a more positive classroom climate, increased participation in discussions, better evaluations from the students at the end of the course were cited.

Land’s second recommendation is to “display the framework” meaning that helping students to organize the content they are about to engage in improves their understanding and learning. The approach can be as simple as using the board to write an outline of your lecture or list of discussion topics. Connections that are clear to you, may not be to your students. Creating this kind of agenda helps students see what is important and how topics are connected.

Third, Lang exhorts instructors to “create wonder.” He uses an example of an astronomy professor who before the start of each class puts up an image from the cosmos and asks two questions: “What do you notice? What do you wonder?” Using material related to your course content to stimulate informal discussion at the start of class can “can activate students’ prior knowledge, helping them form connections with what they already know. It also offers both the instructor and the students the opportunity to discuss how the images connect to previous course material.” As well, students see your excitement about the course content.

In the second article, Small Changes in Teaching: The First 5 Minutes of Class: 4 quick ways to shift students’ attention from life’s distractions to your course content [CHE January 11, 2016], Lang argues that “[t]he opening five minutes offer us a rich opportunity to capture the attention of students and prepare them for learning.” Students come into the classroom distracted and using the opening few minutes for logistics—taking attendance, making announcements—may not be the most effective strategy. Instead, Lang suggest opening class with a question or two, the answers to which will be uncovered during class. At the end of class, return to the questions so that your students can now formulate potential answers. This exercise allows students to see a purpose to the class session.

Another idea is to review what was covered in the previous class. Lang proposes that “… instead of offering a capsule review to students, why not ask them to offer one back to you?” He points out that learning researchers have shown that quizzing students works not only as an assessment of student learning but promotes it.

Not only will you want to review what you have taught, but you should “reactivate what [students] have learned in previous courses.” By asking students what they already know, you can help them make connections to the material in your course, and you can fill in gaps and correct misunderstandings.

Lang states that all of these activities will benefit from having students write down their individual responses before sharing with the class. “That way, every student has the opportunity to answer the question, practice memory retrieval from the previous session, or surface their prior knowledge — and not just the students most likely to raise their hands in class.” He advocates for “frequent, low-stakes writing assignments” to encourage student engagement.

All of these suggestions are low-barrier, easy to implement strategies. You don’t have to use all of them at once. Pick one or two and see how they work. I am looking forward to Lang’s next article in the series and to his new book, Small Teaching: Everyday Lessons from the Science of Learning, which will be published in March of 2016. 

*********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: CC Photo by Creative Services: http://spirit.gmu.edu/wp-content/uploads/2013/05/student-presentation-ncc.jpg

Can We Discourage Violations of Academic Integrity?

It’s been some time since The Innovative Instructor looked at issues of academic integrity [see Discouraging Cheating in the Classroom, November 13, 2012], but a recent article in The Chronicle of Higher Education, In a Fake Online Class With Students Paid to Cheat, Could Professors Catch the Culprits?, December 22, 2015, stimulated discussion among my colleagues. Although this study involved an online class, the implications are far-reaching. Even in face-to-face classes students can avail themselves of these for fee services that supply research papers that will pass through plagiarism detectors and provide answers to other types of assignments. In the face of such egregious practices, what can faculty do to encourage students to be honest?

StudentsCheatingIn smaller classes, where the instructor can to get to know the students as individuals, and course work is centered on in-class discussion, there may be fewer opportunities for violations of academic integrity. In these classes, however, writing often plays a big role and plagiarism, intentional or not, can be an issue. In Designing Activities and Assignments to Discourage Plagiarism, Alice Robison, Bonnie K. Smith suggest some strategies for instructors of writing intensive courses.

For mid-size classes, pedagogical interventions, such as flipping a class (see previous posts here, here, here, and here) can be productive if in-class problem solving, group work, and experiential activities are emphasized. These innovations can be time-consuming for an instructor to implement, however, and if the class size is large, it may not be possible to follow a flipped class or hybrid model.

Large classes can present greater challenges, particularly if testing is the focus for student assessment. There are a number of academic websites with resources for dealing with preventing cheating on tests, for example the Center for Innovation in Teaching & Learning at the University of Illinois at Urbana-Champaign, offers a tip sheet on Dealing with Cheating. Stanford’s Tomorrow’s Professor, offers a post on (Cheating) Prevention Techniques for Tests, based on three principles: “1) Affirm the importance of academic integrity; 20 Reduce opportunities to engage in academic dishonesty; and 3) Develop fair and relevant tests (and/or forms of assessment).”

In all cases, the best results come when colleges and universities establish a strong institutional culture of academic integrity.  This was the subject of the 2012 post. It’s worth repeating the citation of the University of North Carolina’s Center for Faculty Excellence’s blog, CFE 100+ Tips for Teaching Large Classes, article Tip #27: Discourage Cheating by Providing Moral Reminders and Logistical Obstacles.

Do you have suggestions for encouraging ethical behavior? As always, we welcome your comments.

********************************************************************************************************

Macie Hall, Senior Instructional Designer
Center for Educational Resources

Image source: Microsoft Clip Art