Lunch and Learn: Continuous Improvement – Maintaining Engagement in the Classroom as an Instructor

On Wednesday, November 20, 2024, the Center for Teaching Excellence and Innovation (CTEI) hosted a Lunch and Learn panel discussion titled, “Continuous Improvement: Maintaining Engagement in the Classroom as an Instructor.” Featured faculty panelists included Belinda Chen, Assistant Professor of Medicine and Director of Faculty Development Programs in Curriculum Development at the School of Medicine, Anicia Timberlake, Assistant Professor of Musicology at the Peabody Institute, and Lisa WrightLecturer in the University Writing Program at the Krieger School of Arts & Sciences. Caroline Egan, Teaching Academy Program Manager, facilitated the dialogue.

Caroline Egan opened the session by asking panelists how they maintain their energy and focus, and if they have any techniques to share. Lisa Wright described how she hosts group writing sessions with students and colleagues, something she started as a graduate student during Covid: “I find that I write better when I am with my colleagues. It helps me stay engaged with my classes, my research, and I get to know how my students are impacted by the writing they are doing.” She also regularly engages with the Baltimore community, saying, “I have met guest speakers for my classes and have discovered and hosted special events for students where they are able to work alongside members of the community.”

Belinda Chen noted the advantage she has of working in a clinical setting (in addition to her academic work) and how it enables her to regularly bring new material to the classroom: “Being in the field helps explain why what I’m teaching my students is important and why it matters. It’s really cool and interesting stuff!”

Anicia Timberlake likes to pose questions that interest her to students about the topics she is teaching, such as why a piece of music solves a particular historical problem; in addition, she loves to tell stories about unresolved dichotomies. She also enjoys designing activities that allow students to collaborate and discover new things together.  For inspiration, Timberlake relies on the greater instructional community: “I joined a Facebook group about music history and pedagogy which has been helpful.”

The panelists went on to discuss challenges they have faced recently and steps they have taken to address them. Wright, whose research focuses on Black maternal health, stated: “Normally I get a lot of Black students, but not this year. This has changed my course. Students without an African descent bring a different experience to the room.” She described how she has had to make some adjustments in her teaching: “I need to continuously improve; I want to make sure what I’m bringing is what is needed. I have students reflect on every assignment, asking them, ‘How can I do better? What would you like to learn next?’”

Chen has also adjusted her teaching in response to how the faculty who take her course have changed over the years: ”They have less time on their hands. They used to have more time to think, engage, and reflect. Now it’s more like, ‘Give me what I need to know.’ This has led to changes in my assignments and the structure of the class. It can be challenging but I need to be willing to adapt core content to where people are, where they want to be.”Instructor standing in the front of a classroom of college-level students

Timberlake raised the issue of getting students to speak during a seminar: “I try to design our time together so that students have more explicit structure resulting in greater participation. I also visit colleagues’ classes to see what they are doing. They often have the same issues, which helps me feel less alone in trying to figure this out.”

When asked what advice they would give to graduate students and new teachers as they embark on their careers, in terms of holding on to their passion, the panelists had these words of wisdom to share:

  • Lisa Wright urged a prioritization of one’s self: “Reflect on what your true interests are and do not let academia run you down. You have to learn to say no to some things. You will want to be there for students, but you also need to be there for yourself.”
  • Belinda Chen encouraged a willingness to change your approach to teaching: “Be open to the fact that what you have may not be what students need at the time. Knowledge and information are easier to access nowadays, so maybe what is more important is the questions that you have about the information. It’s ok to admit that you don’t have all the answers. Being a teacher does not require that you know everything.”
  • Anicia Timberlake had several suggestions:
    • Don’t reinvent the wheel: read colleagues’ syllabi, talk to and collaborate with other instructors.
    • Recognize that students learn when they do the work, not when the instructor does the work; find more ways for students to engage with each other and work together.
    • Do not feel like a failure when things don’t go as planned. Ask yourself: How can I learn from this? Don’t focus on doing everything 100 percent correct all the time.

From this point on, the panelists participated in a Q and A session with audience members:

Q: In the second half of the semester, students tend to lose motivation. Is there anything we can do to address this?

LW: Building relationships in the classroom is important. This may be tougher for larger classes but try to check in with students. Give them a chance to speak. Some students are experiencing trauma or other difficulties and don’t know where to go for help. If they know you care, that can help.College-level students having a discussion sitting around a table
BC: I agree, we do check-ins, too. Go for small wins – what is something that is motivating for everyone? Try to think about a win that everyone can go for. Find a way to engage in something that doesn’t require so much effort but is still moving things along in the right trajectory in terms of the class.
AT: Change something in the middle of the semester. Don’t let students autopilot through until the end. Include in-class activities that allow them to work together, socialize with each other, and require less feedback from you as the instructor. Even a small twist on the rules of the class can help. For example: ask students to call on the next person to speak during a class discussion. Or have students participate in a collaborative writing activity in a shared Google Doc. Try to plan interesting material and activities towards to the end of the semester to keep the excitement going.

Q: I teach writing and communication classes to students in the Whiting School of Engineering. I often hear students talk about Humanities classes as “blow off” classes. What advice do you have to convince them that these skills matter?

LW: I love this age group – these students are invested in the future. We need to take advantage of that. Give them a task but keep the boundaries wide. They need to be invested in the ask. I’m getting Public Health students and students from various other majors, and I’m interested to see what they come up with. You have to be invested in what you are asking of them. It makes a difference.
BC:  We are working with high level students. Tap into a special skill that they have. Take the time to understand where they feel like they could have more impact. Ask them, “How could you communicate this to an audience? What would you want to say?”
LW: Audience matters – let them choose their audience. This makes a difference. Allow them to send their ideas out to an actual audience for feedback.
AT: I love the idea of choosing their audience. Choosing topics is also important. I teach students, who are musicians, to write. I assign things that they can relate to, but also things that aren’t relevant to them at first.

Q: I teach international students at the School of Advanced International Studies with little or no experience participating in discussions. Any advice for teaching international students?

LW: Perhaps putting students in small groups would help. This will get them talking with each other. Let them choose their groups and meet with them regularly to check in. Ask them to review their peers’ writings; this will help them grow as communicators.Two students working on something together
BC: Figure out why they are not talking. For example, if it seems to be a cultural issue, maybe there are specific strategies to help such as having them talk to each other without teacher interference, or requiring everyone to speak, but keeping the stakes very low, or offering positive feedback for speaking to help them open up.
AT: I teach a lot of international students. I also studied in Germany. In the U.S., we assume the types of classroom conversations that we value are second nature, but they are actually a product of our culture. It helps to point this out to students: a classroom discussion is a learnable skill, not an innate talent. It can also help to show them how conversations work: 80% of a conversation is people nodding or saying they agree with an idea, which doesn’t require any particular preparation and is very low risk. Make it clear that you notice when your students participate in this way; they will eventually build up to taking more risks.  Also, the pace of the class can be an issue. Slow things down for your students. Take pauses during activities, allow students to ask questions. Anonymous online interaction tools, such as Jamboard*, might also be helpful. Tools that depersonalize people allow for more freedom and encourage them to ask more questions.

Audience comment: As an international student, I found group discussions very helpful. Eye contact from the teacher and also being invited to speak by the teacher were also helpful.

Q: I am a graduate student and I have 2 questions:
1. I just started teaching and I have a hard time getting quiet students engaged. Any ideas to help with this?
2. I teach History of Science to STEM majors. How can I engage students outside of the classroom, in the community?

AT: For quiet students: consider surveying them anonymously to find out why they don’t want to talk. Ask them, “What can I do to help? What can you do to help?” Often, it’s the pace of the class, or the size of the group. I build in pauses so students have time to collect their thoughts. Build in think-pair-share activities with smaller groups to allow them to get more comfortable interacting with their peers.
LW: Give the quiet students a chance to write out their thoughts, then let them talk it out. Also, we should not be afraid of silence. Give students a chance to think, wait for them. Let them know you want to hear from them.
AT: We tend to teach classes that award participation points for speaking. But this can penalize those who don’t speak, and places a negative incentive on vocal contributions. Instead, consider giving a grade for respectful presence in the classroom, and giving extra credit for vocal participation. It sends a message that you value what they say and may help to incentivize them to talk. We need to hear diverse voices.
BC: Writing is important, but there are other ways to communicate. Give students options: use the discussion board or chat tool, record a video, post a picture, etc. Be open to using other tools. Also, tap into the importance of your subject. Don’t be apologetic for your subject – students will pick up on that. Try to diagnose why these students are quiet. What else do they have going on? Build in flexibility into your course.
LW: For engaging your STEM students outside of class, consider creating or sharing events that connect to existing STEM-related events happening in the community. Another idea is to embed a 5 minute “What’s going on” activity into each class to review what events are going on within the field that may be interesting for students to attend.

Q: How do you check in with students in class? Are there other strategies to get through all of the content?

LW: There are several ways of showing students you care: quickly ask how they are, give them a moment to journal their thoughts, participate on a discussion board, etc. If it’s a large class, they could respond with thumbs up/thumbs down. This doesn’t have to take a lot of time.Woman writing in a notebook
AT: Experiment with different ways. You could ask them how they are doing and have them answer in writing. Or ask them, “What is one thing that confused you? What is one thing you understand really well?” You could use online tools such as a word cloud in Poll Everywhere, or stickers in Jamboard. All of these ideas allow you to quickly pick up on main themes of how the class is doing.
LW: Make sure students are aware of the resources that are available to them. Have a list ready to send or share with them.
BC: Check-ins can also be about your content. For example, a quick quiz to help people remember what they already know.

*Jamboard will be discontinued on December 31, 2024. Other alternative tools to consider include FigJam, Lucidspark, and Miro.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Pixabay, Unsplash

Lunch and Learn: From Plato to Pixar – Using Storytelling Frameworks to Drive Learner Engagement and Improved Outcomes

On Tuesday, October 8, 2024, the Center for Teaching Excellence and Innovation (CTEI) hosted the first Lunch and Learn of the Fall 2024 semester. Brian Klaas, Assistant Director for Technology and instructor at the Bloomberg School of Public Health, presented: From Plato to Pixar – Using Storytelling Frameworks to Drive Learner Engagement and Improved Outcomes. Caroline Egan, Teaching Academy Program Manager, moderated the presentation.

Brian Klaas opened the presentation by highlighting the valuable role storytelling plays in the classroom. While sharing facts is essential, building a narrative around those facts provides the context that gives them meaning. When we teach, we enact a narrative; we are telling a story. Stories help students connect abstract or complex ideas to real-world applications, making the content more relatable and engaging. Students are more likely to recall and retain information that resonates with them on some level. Storytelling also encourages students to think critically as they analyze characters, events, and outcomes, which can deepen their understanding of the material.

Klaas went on to describe the four cornerstones of narratives and encouraged audience members to think about how they might apply them to their teaching:

  1. Conflict: What problem are we trying to solve? What are we trying to overcome? What stories as a presenter can I frame through conflict? Conflict gives us drama and tension.
  2. Character: How can you draw people into your lectures or stories? We need facts and data, but we also need to engage with the emotional part of the brain. There are many opportunities to include characters/people into your data – including yourself!
  3. Segmenting: Organizing and chunking information, such as chapters in books, acts in plays, etc., gives our presentation a logical flow. We present one idea at a time, declare why it’s important, before moving on to the next one. Segmenting gives us a sense of moving forward.
  4. Reflection: What does this mean to me? Why is this important? As educators we can incorporate reflection into our teaching in various ways, including think-pair-share, self-assessment, journaling, etc.

Klaas acknowledged that it can be difficult to make the shift from sharing facts to telling stories. He introduced the audience to two storytelling frameworks that can help with this process: the Hero’s Journey and the Pixar Framework.

Circular diagram showing the 12 steps of the Hero's Journey.The Hero’s Journey is a popular template that follows the adventures of a hero who faces some sort of conflict, overcomes various obstacles along the way, and eventually emerges victorious. In the process, the hero is transformed in some way, embracing newfound knowledge and lessons learned. Examples of stories that follow this template include: The Lord of the Rings, Harry Potter, and Star Wars. Originally 12 steps, The Hero’s Journey template can be divided into 3 main acts:

  1. Departure/Separation: Where do things stand? This act presents the background, the current cultural context, followed by an event that pushes the hero to begin the journey.
  2. Initiation: What went wrong? What is the issue? Why can’t we move forward? This act explores the series of challenges faced by the hero that help to create tension and conflict.
  3. Return: What lessons did we learn? Why does this matter? This act shows what was learned and how the world is changed, why it is meaningful.

Klaas gave an example of a Hero’s Journey story:
He told the audience about one of his former students who traveled to Nigeria to study that country’s waste disposal and sewage system. While there, she noticed a woman repeatedly leaving her hut to go out into the grass. When the student asked why, she was told that the woman recently had a baby, was having some problems, and wasn’t able to engage with the community. The student learned that the woman experienced an obstetric fistula, a serious complication of childbirth that causes women to suffer incontinence, shame, and social segregation. The student went to community leaders and tried to explain to them that this is common, that the woman just needed proper care. The leaders rejected her plea. For the student, this was a lesson in cultural humility. She learned that local hospitals are not equipped to deal with this issue. This encounter led to her to shift her studies to help women deal with this problem. She ended up working on a project to help women in this region.

Klaas noted that the hero does not have to be a person – it could be a cell, for example – and that this framework could be a powerful way to present research to the world.

The Pixar framework, which forms the foundation of animated Pixar films, such as Finding Nemo and Toy Story, uses the following format:

  • Once upon a time… (context of the world)
  • And every day… (everyday life in that world)
  • Until one day… (incident that launches the story)
  • And because of this… (the character’s journey)
  • And because of that… (new journey the character takes)
  • Until finally… (resolution of the story)

This framework can be applied to a number of different areas, such as literature, health sciences, and history. It can be used to tell a story about why things fail or why things change – it doesn’t always have to be a success.  Klaas gave the example of how this format could be applied to narrate a problem such as antibiotic resistance:

  • Once upon a time… You get an antibiotic every time you go to the
    doctor
  • And every day… Antibiotic-resistant bacteria are on the rise,
    and here’s the data to prove it!
  • Until one day… Strategy for reducing antibiotic
    overprescription and sparking new research
  • And because of this…Reduction in antibiotic-resistant microbes;
    increase in funding for new antibiotic research
  • And because of that… Better health outcomes for people; better
    incentives for private research
  • Until finally… Generations of new antibiotics without living
    in fear of paper cuts killing us

Audience members were asked toOrange clownfish from Finding Nemo movie. share their ideas of how they might use this framework in their courses: One guest suggested using the framework to share research findings about high cholesterol with students in a concise manner. Another guest suggested using it to describe the history of drunk driving and the evolution of the breathalyzer test, leading to the development of a handheld alcohol detection device. And another guest suggested using it to talk about climate change in order to facilitate discussion.

The presentation wrapped up with a brief Q and A session:

Q: How vital is it to center our teaching around one protagonist as opposed to many? BK: Use storytelling where you can. It’s hard to use all the time, but having context makes it relevant. Always look for meaning, something that will be remembered down the line.
Guest: It helps when trying to make data meaningful. Seeing the story of one person works well. Sometimes too many people [as protagonists] is overwhelming, it becomes abstract. But sometimes showing the numbers affected [in terms of data] can be very powerful.

Q: Students have to write personal narratives for their medical school applications; they try to present themselves as the perfect candidate. Do you recommend using storytelling here?
BK: Yes, you can use storytelling in an application. Storytelling comes from written form, so yes, it will work in writing. My son is in the process of writing his college essays – he’s using the Pixar model right now. It made it easier on him to tell the story once he had a backbone.

Q: Could storytelling be used to help students solve math-based problems? Do you see this?
BK: I haven’t used it this way, but a colleague used it to share complicated math and statistics results from his research. I can see it working, through logical proofs. You don’t have to use the whole Pixar framework – you can use 4 of the 6 steps, for example, to make it work for you.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Writer’s Digest, Disney/Pixar

Quick Tips: Low to No Prep Classroom Activities

Student engagement is a critical component of higher education and a frequent topic of interest among instructors.  Actively engaging students in the learning process helps increase motivation, supports collaboration, and deepens understanding of course material. Finding activities that instructors can implement quickly while also proving worthwhile to students can be a challenge. I recently attended a conference with a session titled, “Low to No Prep Classroom Activities.”  Jennifer Merrill, psychology professor from San Mateo County Community College, shared some simple classroom activities that require very little or no preparation ahead of time that I thought were worth sharing:

Music:
Playing music as students enter the classroom creates a shared experience which can encourage social interaction, inspire creative thinking, and lead to positive classroom dynamics. It can be used as an icebreaker, to set a particular mood, or specifically relate to the course in some way. Research shows that music stimulates activity in the brain that is tied to improved focus, attention, and memory.

  • Incorporate music as part of a regular classroom routine to indicate that it’s time to focus on the upcoming lesson.
  • Use it to introduce a new topic or review a current or past topic. Ask students to articulate how they think the music/artist/song relates to the course material and then share with the class.
  • Allow students to suggest/select what type of music they would like to hear.

Academic Speed Dating:
Like traditional speed dating, academic speed dating consists of short, timed conversations with a series of partners around a particular topic.Two lines of college students in a classroom, playing a round of academic speed dating. In this case, students are given a prompt from the instructor, briefly discuss their response with a partner, and then rotate to a new partner when the time is up. Partners face each other in two lines, with one line of students continuously shifting through the other line until they return to their original partner. This can also be done by having students form inner and outer circles, instead of lines. A few of the benefits of academic speed dating include:

  • Sharing and questioning students’ own knowledge while gaining different perspectives on a topic.
  • Enhancing communication skills as students learn to express their ideas quickly and efficiently.
  • Providing a safe space to share ideas as students interact with others, which can lead to a positive classroom climate.

Memory:
The classic “Memory Game” consists of a set of cards with matching pairs of text or images. Cards are shuffled and placed face down; players take turns turning over 2 cards at a time, trying to find matching pairs.  In this version, students take part in creating the cards themselves, using index cards, before playing the game. Memory can be used to reinforce learning and enhance the retention of course material.

Suggested steps for implementation:
1. On the board, the instructor lists 10 terms or concepts related to the course in some way.
2. Students are divided into groups of no more than 5 people. Each student in the group selects 2 terms/concepts from the list.
3. Using index cards, students write the name of the term/concept on one card, and an example of the term/concept on another card (e.g., “supply and demand” and “gasoline prices rising in the summer with more people driving”). Examples could also include images, instead of text.
4. When the groups are finished creating their sets of cards, they exchange their cards with another group and play the game, trying to match as many pairs as they can.

  • Use Memory College students playing a memory game with index cards.to review definitions, formulas, or other test material in a fun, collaborative environment.
  • Enhance cognitive skills, such as concentration, short-term memory, and pattern recognition.
  • Facilitate team building skills as students work in groups to create and play the game.

Pictionary:
In this version of classroom Pictionary, students are divided into groups that are each assigned a particular topic.  Each group is tasked with drawing an image representation of their topic, e.g., “Create images that represent the function of two glial cells assigned to your group.”  Ideally, it works best if drawings are large enough to be displayed College students in a classroom doing a gallery walk.around the classroom, such as on an easel, whiteboard, or large Post-it note paper. When each group is finished with their drawings, all students participate in a gallery walk, offering feedback to the other groups.  Facilitate a small or whole group discussion to reflect on the feedback each group received.

  • Enhance problem solving skills and creativity by asking students to think critically about how to represent information visually.
  • Use Pictionary to get students up and moving around the classroom, which will help keep them actively engaged with course content.
  • Help students develop constructive feedback skills as they participate in the gallery walk part of the activity.

Hawks and Eagles:
This activity is a version of “think-pair-share” that gets students up and moving around the classroom.

Suggested steps for implementation:
1. Students pair with someone nearby and decide who will be the Hawk and who will be the Eagle.
2. Give all students a prompt or topic to discuss and allow them time to think about their response (1-3 minutes).
3. Students share their responses with their paired partner (1-3 minutes).
4. Ask Hawks to raise their hands. Ask the Eagles to get up and go find a different Hawk.
5. Students share their responses with their new partner.
6. Repeat steps 4 and 5, if desired, to allow students to pair with multiple partners.
7. Debrief topic with the whole class.

  • Use Hawks and Eagles as an icebreaker activity for students to introduce and get to know one another.
  • Use this activity as a formative assessment to gauge student comprehension of a particular topic.
  • Expose students to multiple perspectives or viewpoints on a particular topic by having them engage with multiple partners.

IQ Cards:
IQ cards (“Insight/Question Cards”) is an exit ticket activity that acts as a formative assessment strategy. At the end of a class or unit, ask students to write down on an index card any takeaways or new information they have learned. On the other side ofStack of index cards. the card, ask them to write down any remaining questions they have about the lesson or unit. Collect student responses and share their “insights” and “questions” with the class at the next meeting.

  • Gather instant feedback from students and quickly assess their grasp of the material, noting where any changes or adjustments might be needed.
  • Reinforce knowledge by asking students to recall key concepts of the lesson or unit.
  • Use IQ Cards as a self-assessment activity for students to reflect on their own learning.

Do you have any additional low or no prep activities you use in the classroom? Please feel free to share them in the comments. If you have any questions about any of the activities described above or other questions about student engagement, please contact the CTEI – we are here to help!

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

References:
Baker, M. (2007). Music moves brain to pay attention, Stanford study finds. Stanford Medicine: News Center. Retrieved August 26, 2024, from https://med.stanford.edu/news/all-news/2007/07/music-moves-brain-to-pay-attention-stanford-study-finds.html

Image source: Jennifer Merrill, Pixabay

The Teaching Fellows Project: Community-based Learning in Baltimore City Schools

[Guest post by Katharine Noel, Associate Teaching Professor, Writing Seminars, Johns Hopkins University]

As a grad student, I was given three days of teacher training before being thrown into a classroom.  This was a composition class with fifty first-year students.  My pedagogical training – if you can call it that – included how to grade on a curve and how to confront cheating and plagiarism without using the words “cheating” or “plagiarism,” a dodge that would supposedly protect the university from lawsuits.  The focus on school protocols implied that teaching itself would be straightforward.  After all, as grad students, we were working at advanced levels; shouldn’t imparting a simplified version of our subject be easy?

Without any real idea of how to convey my “expertise,” I thought back to my own professors.  I wanted, of course, to emulate the best of them, teachers who’d connected with their students, creating excitement while at the same time expressing warmth and engagement.  And yet I’d learned just as many lessons – possibly more – from the ineffective teaching I’d observed: the professor who was charismatic and funny but seemed more concerned with making the students adore him than helping them engage with the subject.  Or the one who started discussions with questions so long and complicated – filled with backtracking, amendments, and counterarguments – that by the time she was finished, students had no idea what they were meant to discuss. Teachers who seemed dismissive or defensive.  Teachers too rigid to pivot; teachers too lax to have an overarching plan.

The Teaching Fellows and WBS mentors outside of a building in Baltimore.

The Teaching Fellows and WBS mentors on a teaching field trip to Baltimore Youth Arts, a creative entrepreneurship and job training program focusing on young people involved in the justice system

Recently, I’ve been reminded of this early teaching experience.  At Hopkins, I teach in The Writing Seminars department.  In addition to standard creative writing courses, for the last five years I’ve taught a community-based learning class in partnership with the nonprofit organization Writers in Baltimore Schools (WBS), founded by Hopkins alum Patrice Hutton. Thanks to  a grant from CTEI, this past year we expanded the class to become the year-long Teaching Fellows Project.

The Teaching Fellows – twelve undergraduates chosen by application from across KSAS – lead weekly creative writing groups in under-resourced elementary and middle schools across the city. The class they take with me provides training and support, as well as the opportunity to work closely with WBS mentors. We study topics like student-centered pedagogy, educational equity, and the social and political context in which Baltimore schools operate.  Writers in Baltimore Schools provides curriculum for teaching elementary and middle-school writing groups, but near the end of the year, each Hopkins student creates, teaches, and revises an original lesson plan based on the interests and needs of their students.

A guest lecture by Ms. Araba Maze, founder of Storybook Maze, which aims to increase book access in Baltimore’s book deserts

The CUE-2 final report stresses the importance of community-based and applied learning, stating that “we should aspire to transform the college experience from one composed solely of traditional elements – lectures, papers, problem sets, and exams – to one in which these elements sit amid a much broader range of learning activities.”  The Teaching Fellows Project is designed to provide this kind of community-based and applied learning opportunity, connecting academic theory to real-world impact. Students bring what they learn in our classroom to their worksites, and bring what they learn in their worksites back to our classroom. Knowledge gained from meaningful engagement in the community is deepened by the knowledge gained through reading, discussions, and guest lecturers, and vice-versa. At times, it all feels very meta: as I teach students to teach, I also point out the techniques and tactics I’m using as a teacher; as students encounter challenges at their worksites, I adjust my curriculum to address those topics that feel most relevant and vital.

One of the first exercises the Teaching Fellows do, based on my own early groping for models, is to think back to their best teachers and try to isolate what made them so effective. Some of these “teachers” are the ones they had in classrooms; others turn out to be coaches, bosses, ministers, co-workers, or relatives. The next week, we repeat the same exercise by discussing frustrating learning experiences.  The complicated interwoven skills of teaching can be most visible when they work together imperfectly, since excellent teachers achieve a kind of magic that means – as with any magician – their moves can be too deft to make out.

My scant training as a grad student seemed predicated on the idea that teaching could and should be easy. What the WBS mentors and I try to convey in The Teaching Fellows Project is very different: that teaching is often hard, confounding, overwhelming, and awkward – as well as thrilling, meaningful, revealing, and joyous.  It can even – at rare moments – feel nearly effortless.

Katharine Noel
Associate Teaching Professor, Writing Seminars
Johns Hopkins University

Prior to coming to Johns Hopkins, Katharine Noel was the Writer in Residence at Claremont McKenna College (2009 to 2013).  From 2002-2009, she was a Jones Lecturer at Stanford University, where she held Wallace Stegner and Truman Capote fellowships in 2000–2002. Before teaching at Stanford, she worked for two years at Gould Farm, a program in the Berkshire Mountains for adults with mental illnesses, and for four years at an Oakland, California shelter for women and children experiencing homelessness.  At Hopkins, in addition to teaching fiction writing, she directs The Teaching Fellows Project.

Image Source: Writers in Baltimore Schools

Lunch and Learn: Generative AI Uses in the Classroom

On Tuesday, April 23rd, the Center for Teaching Excellence and Innovation (CTEI) hosted a Lunch and Learn on Generative AI Uses in the Classroom. Faculty panelists included Louis Hyman, Dorothy Ross Professor of Political Economy in History and Professor at the SNF Agora Institute, Jeffrey Gray, Professor of Chemical and Biomolecular Engineering in the Whiting School, and Brian Klaas, Assistant Director for Technology and instructor at the Bloomberg School of Public Health. Caroline Egan, Teaching Academy Program Manager, moderated the discussion.  

Louis Hyman began the presentation by reminding the audience what large language models (LLMs) like ChatGPT can and cannot do. For example, ChatGPT does not “know” anything and is incapable of reasoning. It generates text that it predicts will best answer the prompt it was given, based on how it was trained. In addition to his course work, Hyman mentioned several tasks he uses ChatGPT to assist with, including text summarization, writing complicated Excel formulas, writing and editing drafts, making PowerPoint tables, and turning image files in the right direction.

In Hyman’s course, AI and Data Methods in History, students are introduced to a variety of tools (e.g., Google Sheets, ChatGPT, Python) that help them analyze and think critically about historical data. Hyman described how students used primers from LinkedIn Learning as well as Generative AI prompts to increase their technical skills which enabled them to take a deeper dive into data analysis. For example, while it would have been too complicated for most students to write code on their own, they learned how to prompt ChatGPT to write code for them.  By the end of the semester, students used application programming interface (API) calls to send data to Google, used OpenAI to clean up historical documents and images presented using optical character recognition (OCR), and used ChatGPT and Python to plot and map historical data.Two maps of 1850 New England showing the number of congregational churches and the value of congregational property. Data points plotted by students using AI.

Hyman noted that one of the most challenging parts of the course was convincing students that it was OK to use ChatGPT, that they were not cheating.  Another challenge was that many students lacked basic computer literacy skills, therefore, getting everyone up to speed took some time. There was also not one shared computer structure/platform. The successes of the course include students’ ability to use libraries and APIs to make arguments in their data analysis, apply statistical analysis of the data, and ask historical questions about the results they were seeing in the data.

Jeff Gray continued by describing his Computational Protein Structure Prediction and Design course that he has taught for over 18 years. In this course, students use molecular visualization and prediction tools like PyRosetta, an interactive Python-based interface that allows them to design custom molecular modeling algorithms. Recently, Gray has introduced open-sourced AI tools into the curriculum (AlphaFold and RoseTTAFold), which predict 3D models of protein structures.

Example of protein folding using AlphaFold.

One of the challenges Gray mentioned was the diversity of student academic backgrounds. There were students from engineering, biology, bioinformatics, computer science, and applied math, among others. To accommodate this challenge, Gray used specifications grading, a grading method in which students are graded pass/fail on individual assessments that align directly with learning goals. In Gray’s class, students were presented with a bundle of problem sets categorized at various difficulty levels. Students selected which ones they wanted to complete and had the option of resubmitting them a second time for full credit. Gray is undecided about using this method going forward, noting that half of the students ended up dropping the course when they tried to complete all of the problems instead of just a few, and found the workload too heavy.  Another challenge was how to balance the fundamental depth of the subject matter versus application.  To address this, Gray structured the twice weekly class with a lecture on one day and a hands-on workshop the other day, which seemed to work well.

Brian Klaas teaches a one credit pass/fail course called Using Generative AI to Improve Public Health. The goal of this course is to allow students to explore AI tools, gain a basic understanding of how they work, and then apply them to their academic work and research. In addition to using the tools, students discussed the possible harms in Generative AI, such as confabulations, biases, etc., the impact of these tools in Public Health research, and future concerns such as the impact on the environment and copyright law. Klaas shared his syllabus statement regarding the usage of AI tools in class, something he strongly recommends all faculty share with their students 

Hands-on assignments included various ways of using Generative AI. In one assignment, students were asked to write a summary of a journal article and then have GenAI write a summary of the same article geared towards different audiences (academics vs. high school students). Students were then asked to analyze the differences between the summaries.Sample instagram post created using AI showing people from different cultures dressed as medical professionals. For another assignment, students were asked to pick from a set of topics and use Generative AI to teach them about the selected topic, noting any confabulations or biases present. They then asked GenAI to create a five-question quiz on the topic and take the quiz. A final assignment was to create an Instagram post on the same topic including a single image and a few sentences explaining the topic to a lay audience. All assignments included a reflection piece which often required peer review.

Lessons learned: Students loved the interdisciplinary approach to the course, confabulations reinforce core data research skills, and learning from each other is key.

The discussion continued with questions from the audience: 

Q: What would you recommend to an instructor who is considering implementing GenAI in the classroom? How do they start thinking about GenAI?
JG: Jupyter notebooks are pretty easy to use. I think students should just give it a try.
LH: I recommend showing students what ”bad” examples look like. The truth is, we can still write better than computers. Use AI to draft papers and then use it as an editing tool – it’s very good as an editing tool. Students can learn a lot from that.
BK : I recommend having students experiment and see where the strengths lie, get an overall awareness of it. Reflect on that process, see what went well, not so well. Feed in an assignment and see what happens. Use a rubric to evaluate the assignment. Put a transcript in and ask it to create a quiz on that information. It can save you some time.

Q for Brian Klaas: What version of GPT were you using?
BK: Any of them – I didn’t prescribe specific tools or versions. We have students all over the world, so they used whatever they had. ChatGPT, Claude, MidJourney, etc. I let the students decide and allowed them to compare differences.

Q for Jeff Gray: Regrading the number of students who dropped, is the aim of the course to have as many students as possible, or a group who is wholly into it?
JG: I don’t know, I’m struggling with this. I want to invite all students but also need to be able to dig into the math and material. It feels like we just scratched the surface. Maybe offering an intersession course to learn the tools before they take this class would be helpful. There is no standard curriculum yet for AI. Where to begin…we’re all over the map as far as what should be included in the curriculum.
LH: I guess it depends on what your goals are. Students are good at “plug and chug,” but bad at asking questions like, “what does this mean?”
BK: We didn’t get to cover everything, either – there is not enough time in a one credit class. There are just so many things to cover.

Q: What advice do you have for faculty who are not computer scientists? Where should we start learning? What should we teach students?
LH: You can ask it to teach you Python, or how to do an API call. It’s amazing at this. I don’t know coding as well as others, but it helps. Just start asking it [GenAI]. Trust it for teaching something like getting Pytorch running on your PC. Encourage students to be curious and just start prompting it.
BK: If you’re not interested in Jupyter notebooks, or some of the more complicated functions, you can use these tools without dealing in data science. It can do other things. It’s about figuring out how to use it to save time, for ideation, for brainstorming.
JG: I have to push back – what if I want to know about what’s going on in Palestine and Israel? I don’t know what I don’t know. How do I know what it’s telling me is correct?
LH: I don’t use it for history – but where is the line of what it’s good and not good at?
BK: I would use it for task lists, areas to explore further, but remember that it has no concept of truth. If you are someone who knows something about the topic, it does get you over the hurdles.
JG: You have to be an expert in the area to rely on it.
LH: Students at the end of my course made so much progress in coding. It depends on what you ask it to do – protein folding is very different than history that already happened.

Q: How can we address concerns with fairness and bias with these tools in teaching?
BK: Give students foundational knowledge about how the tools work. Understand that these are prediction machines that make stuff up. There have been studies done that show how biased they are, with simple prompts. Tell students to experiment – they will learn from this. I suggest working this in as a discussion or some practice for themselves.

Q: Students have learned to ask questions better – would you rather be living now with these tools, or without them?
JG: Students are brainstorming better. They are using more data and more statistics.
BK: AI requires exploration and play to get good responses. It really takes time to learn how to prompt well. You have to keep trying. Culturally, our students are optimized for finding the “right answer;” AI programs us to think that there are multiple answers. There is no one right answer for how to get there.
LH: Using AI is just a different process to get there. It’s different than what we had to do in college. It was hard to use computers because many of us had to play with them to get things to work. Now it all works beautifully with smart phones. Students today aren’t comfortable experimenting. How do we move from memorization to asking questions? It’s very important to me that students have this experience. It’s uncomfortable to be free and questioning, and then go back to the data. How do we reconcile this?

JG: What age is appropriate to introduce AI to kids?
LH: Students don’t read and write as much as they used to. I’m not sure about the balance.
Guest: I work with middle and high school teachers. Middle school is a great time to introduce AI. Middle school kids are already good at taking information in and figuring out what it means. Teachers need time to learn the tools before introducing it to students, including how the tools can be biased, etc.

Q: How can we encourage creative uses of AI?
BK: Ethan Mollick is a good person to follow regarding creative uses of AI in education and what frameworks are out there. To encourage creativity, the more we expose AI to students, the better. They need to play and experiment. We need to teach them to push through and figure things out.
LH: AI enables all of us to do things now that weren’t possible. We need to remember it’s an augment to what we do, not a substitute for our work.

Resources:
Hyman slides
Gray slides
Klaas slides

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Hyman, Gray, and Klaas presentation slides, Unsplash

Lunch and Learn: Active Learning Techniques

On Tuesday, March 12th, the Center for Teaching Excellence and Innovation (CTEI) hosted a Lunch and Learn on Active Learning Techniques: Advice and Guidance from Experienced Faculty. Faculty panelists included Nate Brown, Senior Lecturer, University Writing Program (KSAS); Robert Leheny, Professor and Department Chair, Department of Physics and Astronomy (KSAS); and Michael Falk, Vice Dean of Undergraduate Education and Professor, Department of Materials Science and Engineering (WSE). Caroline Egan, Teaching Academy Program  Manager, moderated the discussion.

Caroline began the session by asking panelists how they got started with active learning and what they would recommend to those who were thinking about implementing it.

Nate Brown described how he heavily relied on his lecture notes to deliver content to students when he first started teaching. As he’s gained more experience, he’s moved away from using lecture notes and actively involves students in their learning.  Brown structures his classes now in such a way that the students drive the conversation and solve problems collectively, leading to greater retention of information and increased engagement. He makes a point of having students think about “why they are doing what they are doing.”

Robert Leheny recalled how the Provost’s Gateway Sciences Initiative from several years ago provided funding to support the redesign of gateway science courses, such as the Introduction to Physics course, which he teaches. The goal of the Gateway Sciences Initiative was to evolve the pedagogy in large introductory science courses to produce better student outcomes.

The Intro to Physics redesign, which was modeled after similar large lecture style courses at NC State and MIT, moved away from a traditional lecture style to a much more interactive experience. Students are divided into groups and sit at round tables instead of in rows, and they solve problem sets together during class rather than at home. This in-class work is partly enabled by a flipped classroom approach which enables students to review the content before coming to class. Leheny said the department now offers two versions of Introduction to Physics that students can select from: an active learning style and a more traditional auditorium/lecture style.

Michael Falk first started implementing  active learning by using  clickers in a 200-student Introduction to Computer Programming course at the University of Michigan several years ago. Since he’s been at Hopkins, his classes have been smaller, allowing him to approach active learning in different ways. Falk gave an example of how he flipped an upper-level materials science course (which is now also part of the Gateway Computing program) so that students work in an online textbook outside of class and do more collaborative work during class. Another example is a First-Year Seminar class taught by Falk, Turing’s Shadow: Uncovering What’s Hidden in STEM. This discussion-based course covers a range of topics, some of which are sensitive, and students are often afraid to speak up. To address this, Falk created a series of discussion cards to help ease students’ discomfort. The cards provide discussion prompts for students, such as “Clarification: Ask for further explanation about something,” and they also inject some fun elements into the conversation by asking respondents to present their response “in the form of a song,” or “while walking around the room very quickly,” for example. It turns the exercise into a game and helps students to feel more comfortable participating in class.

Caroline continued by asking the panelists what their definition of active learning is and to provide a counter-example of it, which would bring its definition into better relief.

NB:   I think it involves giving students a stake in what we’re doing. For example, helping to define the parameters of a paper we’re going to write. I see the professorial role as one of support, like “air traffic control.” With active learning, students are involved in the creation of their own learning.

RL: The primary component of active learning in physics is peer instruction. Students need to be able to solve problems. We don’t use class time to introduce students to concepts, but instead give students an opportunity to practice solving problems where there are resources to help facilitate these skills. For example, students are divided into groups of three and explain to each other how they would go about solving a problem. The act of explaining the problem to someone else helps to solidify their own understanding. A counter example would be the old way of the instructor speaking from the blackboard, talking uninterrupted for most of the class period.

MF: Active learning is learning by doing. Students are engaging with content in a supportive environment. We are teaching a different group of students at Hopkins now – there are many more first- generation, limited-income, and/or underrepresented students with very different backgrounds. We need to think proactively about leveling the playing field for students. This is evident in the data around class outcomes: classes taught using active learning techniques have lower levels of students failing or dropping out. This is even more true for students in underrepresented groups.

RL: We also see this in Intro to Physics. We have the two versions of the course: one in the auditorium (which may have some active learning elements in it), and one designed specifically as an active learning course. The homework and exams are the same in both courses. The outcomes show that failing grades are much less likely to occur in the active learning course.

MF: I used to think my job as an instructor was to deliver content and material. Now, with active learning, I think my job is to deliver an experience.

Caroline continued by asking panelists for a simple active learning technique that instructors can implement right away.

NB: This may sound crazy – it comes from a writer colleague of mine. I was having students read out loud in class and noticed they were struggling: they didn’t feel comfortable, they were shy, or were experiencing language barriers, etc. I then asked them all to read in chorus (at the same time). No one understood what they were hearing, but it shocked them into it being ok to share. It really helped them get over their nerves.

RL: Think-Pair-Share. This technique works very well in a large lecture environment. We give students a multiple choice question and have everyone vote on the answer. Next, they have to find someone who voted differently and try to convince them to change their answer. We then ask students to vote again. The results are that there are usually more correct answers the second time. You do need good questions for this to be effective.

MF: An idea for STEM classes, figure out a way to shorten your lecture and hand out the problem set at the end of class. Allow students to work on them with each other. Ask students to write down the steps on how they would solve the problem, but not actually solve it. Allow time for a report out at the end. This gives them a chance to support each other while organizing information.

CE: A complimentary Humanities example: In my first-year writing class, I hand out labeled strips of paper to students with our class readings on them and ask them to organize the strips in a way that would help the students use the readings in their papers. Also, I give students writing prompts, break them into groups, and ask them to find out where they would find the answers to the prompts. This helps to get them in the right mindset of locating good sources.

Two other examples of active learning were mentioned by faculty guests. One instructor explained how she has students use Legos to construct the analysis of an argument. They connect more and more Legos to build supportive elements of their argument and take away those that they disagree with. Another instructor mentioned that she has students act out responses in class.

The session continued with questions from the audience for the panelists:

Q: In reference to Think-Pair-Share, have you observed any competitiveness among students or reluctance to participate in these activities?
MF: We tell students it has nothing to do with their grade.
RL: We do the same. We also tell them there is no curve and it is possible for everyone to get an A, which reduces overall competitiveness.
NB: One of the great things about this exercise, where students are engaging with each other, is that they get to hear from peers that are from all over the world. We turn it into a social space where they can feel comfortable sharing.

Q: (From a librarian) I recently had about 30 minutes to work with students in a research class. I received feedback from a student that I didn’t do enough active learning in the class, despite doing a brainstorming exercise with them. What do you do when you need more active learning in such a short amount of time?
RL: Explain to students why you structured the class like you did. It will help if you get their buy-in. Maybe the answer is to announce at the beginning that what you’re doing is in fact active leaning.
MF: Students like playing – it makes for a positive learning experience. Perhaps turn part of it into a game/play. And then explain what and why you’re doing it this way.

Q: Are there any active learning experiences to share when you’re guest lecturing? Do you use the same or different strategies?
MF: It needs to be a different strategy. As a guest, you don’t have the advantage of repetition or control of the environment. Explain to students what you’re doing and do the best you can with the constraints that you’re under.
CE: Be very intentional about your choices. At the end, ask them one thing they will remember from the class. This is a good recall exercise.
NB: As a guest speaker, you already are a bit novel since your presence is different than their regular day. Maybe use a novel activity that they will remember.

Q: Could you each share how you put groups together intentionally instead of having students self-form?
RL: Students are put into groups of three. Groups are engineered this way – we switch a few times during the semester. The students don’t know it, but we add them to groups according to their performance on the midterm. In each group, there is one person that scored at the top, one from the middle, and one from a low level. The top level person gets more practice articulating ideas. The lower level person gets the benefit of working with someone who has command of the material. We also group according to gender: we avoid placing two men and one woman in a group to avoid women being excluded. There is research that supports this.
NB: We also do a lot of group work. Halfway through the semester, I ask students to work with someone they haven’t worked with before. I also ask them to sit next to someone different. It results in a richer peer review experience.
MF: I have students do a self-assessment at the very beginning of the course and use the results of the assessment to group students.

For more information about the active learning topics discussed at the event, please see this  Active Learning For Distribution folder of materials developed by Caroline Egan.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Unsplash, Pixabay

Preparing to Teach: Lessons from a Gamemaster

Once upon a time, just before the age of COVID-19, I was asked to teach a course for an undergraduate minor program through JHU’s Center for Leadership Education. I began my journey to teaching my first course by meeting the program director for lunch. After the proposition, it became clear to me that there was sparse content for this new course on data visualization, and it would be up to me to develop and deliver it the following semester. With only a few months to prepare, I quickly realized that my quest to create something from nothing would be full of challenges that might result in a perilous journey, but the bounties were rumored to be plentiful.

When I started to delve into the instructional design of my course including developing content, setting learning goals, and creating a syllabus, I was delighted by the discovery that there are many parallels between designing a course and creating an adventure for Dungeons and Dragons (D&D). D&D is a type of role-playing game where players take on roles of fictional characters and attempt to complete a fantasy adventure designed and delivered by the Dungeon Master (I will use the term “gamemaster” for its broader applicability). In a D&D adventure, the gamemaster introduces the fantasy world to the players and presents challenges for them to overcome by performing actions as their characters.  As a gamemaster, I realized that I had resources that would help me structure the course, plan activities, and engage my students.

Learning Goals vs Plotline

One of the first parallels I found was that the learning goals provided a structure much like plot elements would provide a structure to a D&D adventure. The gamemaster tells stories and sets the stage for the players to interact, and, with the stories, they build on each other to an eventual climactic event. In both cases, you have to sequence the elements in a logical way that builds up to the desired result such as a learning goal or a successful adventure. For instance, one of my learning goals was to have students apply visual design principles to different types of presentations of data. I invested time up front in my course structure to ensure students knew a variety of data visualization types, could identify design principles that work for each, and had practice applying those design techniques. Ensuring your participants are adequately prepared for their true test is important, whether it be acing their final project or slaying an evil dragon.

Activities vs Encounters

Planning activities for each class felt closely related to the gamemaster’s balancing act of creating encounters for their players. In D&D, each player controls a character with specific abilities set by their current level. As a character gains experience, they unlock more abilities as they reach the next level. The gamemaster has to make sure that at each level, the challenge of each encounter is commensurate with the players’ levels to keep them engaged.

For many weeks in the course, I highlighted a topic that would span two class periods that bookended the weekend. Before the first day, there would be a reading to introduce the topic, followed by a lecture at the beginning of the first day to expand on the topic (the background). Then, the students would work on an activity in class, most times in groups, that utilized the concepts presented in the introduction (an encounter). At the end of the activity, we would chat about the results and the related assignment that would be due the following week (rest and reflect). During that weekend, the students would have a short reading that was relevant to the topic and would complete their assignment (continued journey). On the second day for that topic, we would begin the class with a zero-stakes quiz that was based on the readings and mini lecture (another encounter). We then discussed the assignment submissions in a class critique, offering feedback and best practices in a safe setting (the aftermath). The last portion of the class would expand on the topic with one last activity on the topic (gain experience).

Being a Good Host

Just like sitting down for a game of D&D, when teaching your class, you are welcoming students into your space.  It’s not a space you own, but it is one in which you have control over the tone and the proceedings. As a good host, whether for a dinner party, a classroom activity, or a D&D adventure to clear out a cave of kobolds, you must be aware of how your guests are responding to the experience. In the case of D&D, that means being aware of how each player is interacting and contributing to the story you are building together. From the classroom perspective you should be similarly mindful of student engagement and progress. You can achieve this not only with summative assessments (the results from quizzes, assignments, etc.) but also formative assessments (ungraded quizzes, surveys, etc.). For example, a mid-semester survey can help inform you of what the students are enjoying about the class, what could make it better, and any issues with the content that they are having trouble with.

Side Quests

The concept of a Side Quest in gaming refers to an optional task to achieve a supplemental benefit for your character. I used this concept to offer extra-credit assignments that would allow the students to gain bonus points towards assignments, participation, or the final project. The Side Quests provided the opportunity for the students to reengage with the content, give them more data visualization practice, or reflect deeper on topics. The following are examples of a few of my favorite Side Quest assignments:

  • Find the Gestalt!”: Students find a data visualization and describe what gestalt technics were used and where. This provided more practice identifying technics in the wild.
  • You be the Instructor!”: Students develop up to five challenging quiz questions from the course content that had accurate answers. This allowed them to think deeper about a topic.
  • Journal of the Journey!”: Students submit pages from their class notes/sketchbook. This incentivized them to record tidbits from class that they found interesting, which gave me feedback on the parts of the course that resonated with the students.

Final Thoughts

D&D helped me to pull from years of experience as a gamemaster. In the end, as long as you are thoughtfully guiding your participants/students/adventurists to new heights through balanced challenges, they will all surely level up to be ready for their next adventure.

Reid Sczerba, Digital Solutions Designer
Center for Teaching Excellence and Innovation

Image Source: Reid Sczerba, Pixabay

This blog post was adapted from the full article, “Lessons from a Gamemaster,” which is part of our printed Innovative Instructor series.

Quick Tips: Facilitating Group Work

With good reason, one of the most common strategies that instructors turn to in the classroom is assigning students to work collaboratively in groups.  Group work, when thoughtfully designed and facilitated, can be a very effective way to engage students in their learning. Though not without challenges, group work offers numerous benefits: 

  • Increased engagement: Group work promotes active engagement and collaboration among students, which can help build a sense of community in the classroom. The learning process becomes more interactive which can deepen the level of understanding of course material and positively impact classroom dynamics.  
  • Diverse perspectives: Group work encourages the exchange of diverse ideas and perspectives. This can lead to a richer learning environment as students are exposed to different viewpoints and alternative solutions to problems.  
  • Skill development: Working in groups, students acquire a range of skills, including communication, problem-solving, and leadership skills. While certainly relevant in academia, these skills can also help students prepare for a professional work environment, where teamwork and collaboration are essential. 

Simply dividing your students into groups with little or no direction is unlikely to lead to the best outcome. Incorporating group work into courses requires careful planning and clear guidelines to ensure its effectiveness. The following is a list of strategies to consider when facilitating group work: 

Group formation:  

  • Consider aligning students with complementary or diverse skill sets. A broad range of skills often leads to creative ways of approaching and solving problems. Administering a survey to students before the project begins can help determine academic disciplines, backgrounds, and relevant skill levels.  
  • When possible, avoid isolating underrepresented minorities in groups. For example, place 0, 2, or 3 women in a team when forming groups of 3 (i.e., do not create a team of 1 woman and 2 men). This helps prevent the underrepresented from being over-ruled or ignored (Rosser, 1998).   
  • Explore technology options. If using a learning management system (LMS) such as Canvas, it will often include a tool to assist with creating and managing groups. Outside of the LMS, there is a free, open-source tool called gruepr that can assist instructors with group creation. CATME is another tool that assists with group creation and peer review. We reviewed CATME several years ago when it was free, but there is now a fee for use. 

Team Interaction: 

  • Establish ground rules for groups: insist on civil dialogue, respect others’ opinions, listen actively, etc. Involving students in creating the rules helps them hold each other accountable throughout the process. Carnegie Mellon has a resource with suggestions for setting ground rules that may be helpful for instructors. 
  • Assign each student a different role in the group and rotate the roles frequently. This helps to ensure that work is distributed equally throughout the project, avoiding situations where a few students are doing all the work while others are just along for the ride (Finelli et all., 2011). Examples of roles include recorder, spokesperson, summarizer, organizer, observer, timekeeper, or liaison to other groups.  Be sure each role has specific tasks that are clearly laid out for students.  
  • Include one or more short, introductory warm-up activities for group members to engage and get to know one another. This will help to build rapport and encourage participation within the group. 
  • Consider the physical space if allowing students to work in groups during class. Is the room conducive/comfortable for small groups to convene? Will students need accommodations? If teaching online, are groups meeting synchronously or asynchronously? Plan accordingly to anticipate space and technology needs.  

Assessment: 

  • Determine how you will assess the project. Depending on the goals, consider assessing both group and individual contributions. Develop and share rubrics with students so they know exactly what is expected. This sample group work rubric from Carnegie Mellon can be used as a guide. 
  • Meet regularly with each group to monitor progress. Set milestones to help students stay on track and meet their goals.
  • Include opportunities for self and peer assessment. Self-assessment encourages critical thinking and fosters greater self-awareness in student learning.  Peer assessment provides valuable insight for instructors about group dynamics and performance. It can also serve to motivate students to take responsibility for their individual tasks. Be sure to clarify for students if self and peer assessment will count towards their grade.  This assessment form from Carnegie Mellon is designed for students to assess themselves as well as group members.  
  • Allow time for reflection. Asking students to reflect on the process can help them extract meaningful lessons from the project’s successes and challenges.  It can also promote a deeper understanding of the project’s goals and the collaborative process as a whole. Examples of reflective exercises include written responses to specific prompts (i.e. what went well, what could be improved, etc.), small group or whole class discussions, and keeping a journal of the learning experience. More information about group reflection can be found in this resource from the University of New South Wales.   

With proper planning, group projects can be a positive and productive learning experience that will help prepare students for real-world challenges. Do you have additional tips to share about group facilitation? Please share them in the comments. 

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation

Image source: Pixabay

References:

Finelli, C., Bergom, I., & Mesa, V. (2011). Student teams in the engineering classroom and beyond: setting up students for success. Center for Research on Learning and Teaching: University of Michigan. https://files.eric.ed.gov/fulltext/ED573963.pdf  

Rosser, S. V. (1998). Group work in science, engineering, and mathematics: Consequences of ignoring gender and race. College Teaching, 46(3), 82-88. 

University of New South Wales. (n.d.) Supporting students to reflect on their group work. https://www.teaching.unsw.edu.au/helping-students-reflect-group-work

Washington University of St. Louis, Center for Teaching and Learning. (n.d.) Facilitating in-class group work. https://ctl.wustl.edu/resources/facilitating-in-class-group-work/ 

Lunch and Learn: Canvas Show and Tell

 On Wednesday, November 1st, the Center for Teaching Excellence and Innovation (CTEI) hosted a Canvas Show and Tell: Share and Learn about Engaging and Effective Uses of Canvas. Alison Papadakis, Teaching Professor and Director of Clinical Psychological Studies in the Department of Psychological & Brain Sciences, hosted the discussion. She was joined by Emily Braley, Assistant Dean for Undergraduate Academic Affairs and Associate Teaching Professor in the Department of Mathematics, and Jamie Young, Lecturer in the Department of Chemistry. Beth Hals, Brian Cole, and Caroline Egan from the CTEI helped facilitate the event.

Alison Papadakis opened the discussion describing how her interest in Canvas began with her kids, who were using it during COVID. (JHU was still using Blackboard at that time.) Watching her kids struggle with poorly designed Canvas classroom interfaces influenced the way she organized her own Canvas classroom once JHU adopted it as our new learning management system (LMS).  One big decision she made was to stay away from using the Module function, which is often the most common  way to organize content in Canvas. Instead, Papadakis explained how she used the Canvas Page function to create a page with a table outlining her course schedule with hyperlinks to the rest of her content. The homepage of her Canvas site looks like a calendar with hyperlinks for each class day. She regularly checks in with her students, asking if they have trouble finding anything in the course and they always assure her that they do not. Papadakis also makes the Files area in Canvas available to her students, as an additional way for them to access course content, but they tell her they don’t use it. She says the course schedule page is not the “prettiest” display of content, but the functionality works very well for her course and students can easily find what they need for each class period.

Papadakis also does a lot of student advising and needed a place to post links and share information with students. She decided to use a community site, which is similar to a website, but built inside of Canvas. All majors and minors have access to the site as well as other faculty; it is also possible to add other users to the site if necessary. Brian Cole clarified that the key difference between a standard Canvas course and community site is that a standard site is for credited courses and is automatically generated by  JHU’s Student Information System (SIS). Community sites, which all faculty have the ability to request, are for non-credit activities and are intended to share information and resources across multiple populations.

Emily Braley described how the mathematics department is using a community site to host their math placement exam. The university’s switch to Canvas provided an opportunity to revise the exam, which was previously hosted in Blackboard. In Canvas, students are provided with more information about why they are taking the exam as they are guided through a series of steps to help them decide which exam to take. With the help of CTEI staff, Braley described how they embedded a Microsoft form inside of Canvas that asks students what math courses they took in high school, including AP courses. The branching feature of the form then directs students to the appropriate placement exam based on their answers. There are also practice tests that students can take before the actual exam.

The exam itself is set up using a Canvas feature called Mastery Paths. This feature allows an instructor to set up to three ranges of scores for the exam; once they take the exam, student scores are translated into a recommendation for enrollment. Braley also created a customized grading scheme for the exam, which contains information about interpreting the results as well as the actual score for the students.

Braley is very excited about the potential for data analytics with the revised exam process. Using the form provides the department with data which can help identify trends and determine if students are being placed correctly.  All incoming math students are encouraged to take a math placement exam; so far this fall, close to 1100 students have taken the placement exam.

Jamie Young was looking for a way to avoid having to answer the same questions repeatedly from the 640 students in his Introduction to Chemistry lab course. Using HTML code, he was able to create a dropdown FAQ page in Canvas containing embedded links. He estimates he has received 50-60% less questions this semester so far since posting the FAQ page.  He also used HTML to add buttons and links to his syllabus that link out to everything in the course, similar to Alison Papadakis’s course schedule. He believes this saves time for students as they are able to find many things very quickly. Additionally, Young embedded a live Google Document into the course that contains his course schedule. This makes it really easy to update the schedule when necessary as any changes made will immediately be pushed to Canvas – no need to upload an edited document each time a change is made.

In another course, with a combined lecture and lab, Young struggled with displaying a large amount of content. He initially put everything into modules but wasn’t happy with how disorganized they became after adding so much material. He has since turned each module into its own page and links everything from the page. This has been working out much better – again, students are able to find things quickly and easily. Young insists you don’t need much coding knowledge to take advantage of these features in Canvas; you do need to know – or have access to – a  few HTML commands.

The discussion included the following questions from the audience:

Q (for Alison Papadakis): Do you need coding experience to create this [the course schedule]?
AP: I just created it in Word and cut and pasted it in – no coding necessary.

Q (for Alison Papadakis): How do you link the “tone” of your course to the course schedule?
AP: This is an in-person course, so there is a lot of in-class discussion around the course and how it works at the beginning. The course schedule is just the pragmatic piece so we can keep things organized.

Q (for Alison Papadakis): It looks like you assign readings before the semester begins – do you plan everything ahead of the semester, before it starts?
AP: I have taught this course over ten times, so I know basically what’s coming. I put placeholders in for things I don’t know yet. You’ll notice it says ‘Tentative Schedule’ so I can allow for shifting things around if needed. I do need to remember to update the Canvas calendar when making changes to my course schedule.

Q (for Alison Papadakis): Can anyone access the community site?
AP: No, they have to be added to the roster.

Q: (For Beth Hals, CTEI’s Sr. Instructional Technologist) Can you explain Mastery Paths? Is it the same as locking/unlocking a Module?
BH: Mastery Paths are affiliated with some sort of assessment in Canvas. As the instructor, you can set three different sets of score ranges that you use to then send students on their next ‘path’ based on their results. Unlocking modules is a little different – you first set prerequisites on a module that must be completed before the module will unlock.

Q (for Jamie Young): To a neophyte, it’s a little overwhelming to see what you’ve done – there seem to be many ways of doing the same thing. Could you compare and contrast the ways of organizing your syllabus?
JY: You can use the Rich Content Editor (RCE) in Canvas to build your syllabus. If you want to add something like buttons, you would then toggle the RCE to view the HTML editor. Using HTML  is more complicated for sure, but with some basic knowledge you can do it. I would be happy to share what I’ve done and then you can just fill in your information and cut and paste it into your course. To embed the Google Form, I followed online directions that I googled.

Brian Cole, CTEI’s Associate Director for Instructional Technology: You don’t need any HTML  knowledge to embed anything into Canvas. You can use the Rich Content Editor (RCE) to do this. There is an “embed” option in the menu of the editor. You also don’t have to do every page. You can pick and choose what parts of your course to make pretty.

Q: Did Jamie build his syllabus in AEFIS?
BC: No, Jamie built his syllabus using the Canvas Syllabus page. You can still use your own syllabus in conjunction with the AEFIS syllabus – they can coexist. (Note: New name for AEFIS is Heliocampus.)

Q (for Jamie Young): Could you provide a little more information on creating tabs?
JY: They are just HTML code. I used HTML 5. You have to go into the HTML editor in Canvas and use “div” tags to build tabs. Start with the blank tabs in html, then go back to the RCE and fill in the text as needed. You can use copy and paste to make it easier.

Q: Can I move JavaScript headers into Canvas?
BC: No, Canvas will strip them out. An alternative is to embed the page into the Canvas page.
BH: There is something called the Redirect tool that may help. This tool adds an item to your navigational menu. You pick the text for what will display in your menu and it will link to a particular page.

Q: Any ideas about making grading easier?
EB: We use auto grading on all quizzes. We also use banks of questions, so that each quiz pulls from different banks. New Quizzes has matching question types that are more work for students, more robust, but still auto graded. Another thing about New Quizzes is the ability to render Latex [a typesetting software for math symbols]. This has been very useful for us – it’s so much cleaner for students. It renders as accessible MathML, which can be read by a screen reader. This is much better than posting a PDF that is read as an image.
We also use Gradescope, which is an external tool that helps us streamline grading. Students upload their work to Gradescope (inside of Canvas) and you can set it up to help auto grade problems.
JY: We also use Gradescope extensively in Chemistry. We scan written work into Gradescope and it is automatically graded. The system has gotten better at reading handwriting. It has made handwritten assignments so much easier to grade. One caveat about Canvas quizzes: they don’t allow for numbers past 4 decimal places, which we need.

A word about accessibility in Canvas:
EB: You can have Canvas tell you if your material is accessible or not. Use the accessibility checker in the RCE to help you with this.
BH: I also wanted to mention that it’s very easy to duplicate pages in Canvas – build it once, duplicate the page, then fill in what you need to change. It’s like building a template for yourself and reusing it.

For more information about topics discussed at the event, please see this Canvas resource developed by Beth Hals.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Canvas logo

Facilitating Difficult Conversations in Class: Considerations when Teaching Online

In a recent blog post, the CTEI shared strategies that can be used to facilitate difficult conversations in the classroom. The center also hosted a community conversation on the same topic, featuring perspectives from three different faculty members from across the institution. In response, we heard from some instructors who are interested in specific strategies they can use in an online environment. While many of the ideas previously shared can be applied to the online classroom, such as setting ground rules, the following considerations are worth keeping in mind when facilitating difficult conversations online.

  • Establish a positive classroom climate. This is especially important in an online environment where subtle gestures, voice inflections, and facial expressions may be missing. Creating a safe, inclusive environment from the start will encourage student participation and respect among peers. Some ideas include:
    • Engage students in icebreaker or other collaborative activities to ensure multiple opportunities for students to get to know one another.
    • Include a syllabus statement with language expressing a commitment to respecting diverse opinions and being inclusive. Model this commitment by using students’ preferred names, pronouns, inclusive language, and diverse examples. See a recently shared example from Professor John Mercurio in The Chronicle.
    • Communicate regularly with students. Send weekly reminders, post regular announcements, and commit to responding promptly to discussion board posts from students to help them feel connected to the class and to each other.
  • As part of setting ground rules, remind students of “netiquette;” be very clear about rules for online discussions, group interactions, when/if it’s okay to use the chat feature, etc. Consider involving students in creating these rules.
  • Lack of privacy – remember that students on Zoom are not necessarily in a private space and may not feel comfortable speaking or engaging freely with others. Communicate alternate ways for students to engage, such as using chat, polls, or an asynchronous discussion board.
  • In hybrid classes, make sure to include Zoom participants in the discussion. This may require additional or amended ground rules such as requiring everyone to raise their hand (Zoom and in-person participants) before making a comment.
  • Acknowledge and accept that there may be (uncomfortable) pauses due to a bad online connection or people gathering their thoughts.
  • Consider using breakout rooms for students to discuss issues in small groups which may be more comfortable/less intimidating for some.
  • Consider using the chat feature to allow students time to reflect on their response before sharing. The faculty can then selectively address comments shared by students including contextualizing or reframing points made. If you have a co-instructor or teaching assistants, they can help with replying directly to comments posted in the chat.
  • Establish a set of gestures/emojis to be used when asking a question, adding a follow-up idea, agreeing or disagreeing, etc. to keep interruptions to a minimum. (This requires everyone to be in grid view.)
  • As much as possible, keep an eye on Zoom participants for indications of distress. Encourage students to take advantage of university wellness resources.
  • For larger discussions, consider using a Zoom webinar in which you can moderate questions and comments submitted before sharing them. In typical Zoom classrooms, you can ask students to send their comments directly to you in the chat instead of posting to the entire group.

Do you have additional ideas to share? Please post them in the comments.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image Source: Unsplash

References:

Rudenko, N. (August, 12, 2020). Facilitating discussions via Zoom (in a college-level classroom). Medium. https://medium.com/@natasharudenko_37929/facilitating-discussions-via-zoom-in-a-college-level-classroom-619d3ac4343b

Supiano, B. (November 9, 2023). Teaching: How to hold difficult discussions online. The Chronicle of Higher Education.
https://www.chronicle.com/newsletter/teaching/2023-11-09?utm_source=Iterable&utm_medium=email&utm_campaign=campaign_8238698_nl_Teaching_date_20231109&cid=te&source=ams&sourceid=&sra=true