Lunch and Learn: From Plato to Pixar – Using Storytelling Frameworks to Drive Learner Engagement and Improved Outcomes

On Tuesday, October 8, 2024, the Center for Teaching Excellence and Innovation (CTEI) hosted the first Lunch and Learn of the Fall 2024 semester. Brian Klaas, Assistant Director for Technology and instructor at the Bloomberg School of Public Health, presented: From Plato to Pixar – Using Storytelling Frameworks to Drive Learner Engagement and Improved Outcomes. Caroline Egan, Teaching Academy Program Manager, moderated the presentation.

Brian Klaas opened the presentation by highlighting the valuable role storytelling plays in the classroom. While sharing facts is essential, building a narrative around those facts provides the context that gives them meaning. When we teach, we enact a narrative; we are telling a story. Stories help students connect abstract or complex ideas to real-world applications, making the content more relatable and engaging. Students are more likely to recall and retain information that resonates with them on some level. Storytelling also encourages students to think critically as they analyze characters, events, and outcomes, which can deepen their understanding of the material.

Klaas went on to describe the four cornerstones of narratives and encouraged audience members to think about how they might apply them to their teaching:

  1. Conflict: What problem are we trying to solve? What are we trying to overcome? What stories as a presenter can I frame through conflict? Conflict gives us drama and tension.
  2. Character: How can you draw people into your lectures or stories? We need facts and data, but we also need to engage with the emotional part of the brain. There are many opportunities to include characters/people into your data – including yourself!
  3. Segmenting: Organizing and chunking information, such as chapters in books, acts in plays, etc., gives our presentation a logical flow. We present one idea at a time, declare why it’s important, before moving on to the next one. Segmenting gives us a sense of moving forward.
  4. Reflection: What does this mean to me? Why is this important? As educators we can incorporate reflection into our teaching in various ways, including think-pair-share, self-assessment, journaling, etc.

Klaas acknowledged that it can be difficult to make the shift from sharing facts to telling stories. He introduced the audience to two storytelling frameworks that can help with this process: the Hero’s Journey and the Pixar Framework.

Circular diagram showing the 12 steps of the Hero's Journey.The Hero’s Journey is a popular template that follows the adventures of a hero who faces some sort of conflict, overcomes various obstacles along the way, and eventually emerges victorious. In the process, the hero is transformed in some way, embracing newfound knowledge and lessons learned. Examples of stories that follow this template include: The Lord of the Rings, Harry Potter, and Star Wars. Originally 12 steps, The Hero’s Journey template can be divided into 3 main acts:

  1. Departure/Separation: Where do things stand? This act presents the background, the current cultural context, followed by an event that pushes the hero to begin the journey.
  2. Initiation: What went wrong? What is the issue? Why can’t we move forward? This act explores the series of challenges faced by the hero that help to create tension and conflict.
  3. Return: What lessons did we learn? Why does this matter? This act shows what was learned and how the world is changed, why it is meaningful.

Klaas gave an example of a Hero’s Journey story:
He told the audience about one of his former students who traveled to Nigeria to study that country’s waste disposal and sewage system. While there, she noticed a woman repeatedly leaving her hut to go out into the grass. When the student asked why, she was told that the woman recently had a baby, was having some problems, and wasn’t able to engage with the community. The student learned that the woman experienced an obstetric fistula, a serious complication of childbirth that causes women to suffer incontinence, shame, and social segregation. The student went to community leaders and tried to explain to them that this is common, that the woman just needed proper care. The leaders rejected her plea. For the student, this was a lesson in cultural humility. She learned that local hospitals are not equipped to deal with this issue. This encounter led to her to shift her studies to help women deal with this problem. She ended up working on a project to help women in this region.

Klaas noted that the hero does not have to be a person – it could be a cell, for example – and that this framework could be a powerful way to present research to the world.

The Pixar framework, which forms the foundation of animated Pixar films, such as Finding Nemo and Toy Story, uses the following format:

  • Once upon a time… (context of the world)
  • And every day… (everyday life in that world)
  • Until one day… (incident that launches the story)
  • And because of this… (the character’s journey)
  • And because of that… (new journey the character takes)
  • Until finally… (resolution of the story)

This framework can be applied to a number of different areas, such as literature, health sciences, and history. It can be used to tell a story about why things fail or why things change – it doesn’t always have to be a success.  Klaas gave the example of how this format could be applied to narrate a problem such as antibiotic resistance:

  • Once upon a time… You get an antibiotic every time you go to the
    doctor
  • And every day… Antibiotic-resistant bacteria are on the rise,
    and here’s the data to prove it!
  • Until one day… Strategy for reducing antibiotic
    overprescription and sparking new research
  • And because of this…Reduction in antibiotic-resistant microbes;
    increase in funding for new antibiotic research
  • And because of that… Better health outcomes for people; better
    incentives for private research
  • Until finally… Generations of new antibiotics without living
    in fear of paper cuts killing us

Audience members were asked toOrange clownfish from Finding Nemo movie. share their ideas of how they might use this framework in their courses: One guest suggested using the framework to share research findings about high cholesterol with students in a concise manner. Another guest suggested using it to describe the history of drunk driving and the evolution of the breathalyzer test, leading to the development of a handheld alcohol detection device. And another guest suggested using it to talk about climate change in order to facilitate discussion.

The presentation wrapped up with a brief Q and A session:

Q: How vital is it to center our teaching around one protagonist as opposed to many? BK: Use storytelling where you can. It’s hard to use all the time, but having context makes it relevant. Always look for meaning, something that will be remembered down the line.
Guest: It helps when trying to make data meaningful. Seeing the story of one person works well. Sometimes too many people [as protagonists] is overwhelming, it becomes abstract. But sometimes showing the numbers affected [in terms of data] can be very powerful.

Q: Students have to write personal narratives for their medical school applications; they try to present themselves as the perfect candidate. Do you recommend using storytelling here?
BK: Yes, you can use storytelling in an application. Storytelling comes from written form, so yes, it will work in writing. My son is in the process of writing his college essays – he’s using the Pixar model right now. It made it easier on him to tell the story once he had a backbone.

Q: Could storytelling be used to help students solve math-based problems? Do you see this?
BK: I haven’t used it this way, but a colleague used it to share complicated math and statistics results from his research. I can see it working, through logical proofs. You don’t have to use the whole Pixar framework – you can use 4 of the 6 steps, for example, to make it work for you.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Writer’s Digest, Disney/Pixar

Quick Tips: Low to No Prep Classroom Activities

Student engagement is a critical component of higher education and a frequent topic of interest among instructors.  Actively engaging students in the learning process helps increase motivation, supports collaboration, and deepens understanding of course material. Finding activities that instructors can implement quickly while also proving worthwhile to students can be a challenge. I recently attended a conference with a session titled, “Low to No Prep Classroom Activities.”  Jennifer Merrill, psychology professor from San Mateo County Community College, shared some simple classroom activities that require very little or no preparation ahead of time that I thought were worth sharing:

Music:
Playing music as students enter the classroom creates a shared experience which can encourage social interaction, inspire creative thinking, and lead to positive classroom dynamics. It can be used as an icebreaker, to set a particular mood, or specifically relate to the course in some way. Research shows that music stimulates activity in the brain that is tied to improved focus, attention, and memory.

  • Incorporate music as part of a regular classroom routine to indicate that it’s time to focus on the upcoming lesson.
  • Use it to introduce a new topic or review a current or past topic. Ask students to articulate how they think the music/artist/song relates to the course material and then share with the class.
  • Allow students to suggest/select what type of music they would like to hear.

Academic Speed Dating:
Like traditional speed dating, academic speed dating consists of short, timed conversations with a series of partners around a particular topic.Two lines of college students in a classroom, playing a round of academic speed dating. In this case, students are given a prompt from the instructor, briefly discuss their response with a partner, and then rotate to a new partner when the time is up. Partners face each other in two lines, with one line of students continuously shifting through the other line until they return to their original partner. This can also be done by having students form inner and outer circles, instead of lines. A few of the benefits of academic speed dating include:

  • Sharing and questioning students’ own knowledge while gaining different perspectives on a topic.
  • Enhancing communication skills as students learn to express their ideas quickly and efficiently.
  • Providing a safe space to share ideas as students interact with others, which can lead to a positive classroom climate.

Memory:
The classic “Memory Game” consists of a set of cards with matching pairs of text or images. Cards are shuffled and placed face down; players take turns turning over 2 cards at a time, trying to find matching pairs.  In this version, students take part in creating the cards themselves, using index cards, before playing the game. Memory can be used to reinforce learning and enhance the retention of course material.

Suggested steps for implementation:
1. On the board, the instructor lists 10 terms or concepts related to the course in some way.
2. Students are divided into groups of no more than 5 people. Each student in the group selects 2 terms/concepts from the list.
3. Using index cards, students write the name of the term/concept on one card, and an example of the term/concept on another card (e.g., “supply and demand” and “gasoline prices rising in the summer with more people driving”). Examples could also include images, instead of text.
4. When the groups are finished creating their sets of cards, they exchange their cards with another group and play the game, trying to match as many pairs as they can.

  • Use Memory College students playing a memory game with index cards.to review definitions, formulas, or other test material in a fun, collaborative environment.
  • Enhance cognitive skills, such as concentration, short-term memory, and pattern recognition.
  • Facilitate team building skills as students work in groups to create and play the game.

Pictionary:
In this version of classroom Pictionary, students are divided into groups that are each assigned a particular topic.  Each group is tasked with drawing an image representation of their topic, e.g., “Create images that represent the function of two glial cells assigned to your group.”  Ideally, it works best if drawings are large enough to be displayed College students in a classroom doing a gallery walk.around the classroom, such as on an easel, whiteboard, or large Post-it note paper. When each group is finished with their drawings, all students participate in a gallery walk, offering feedback to the other groups.  Facilitate a small or whole group discussion to reflect on the feedback each group received.

  • Enhance problem solving skills and creativity by asking students to think critically about how to represent information visually.
  • Use Pictionary to get students up and moving around the classroom, which will help keep them actively engaged with course content.
  • Help students develop constructive feedback skills as they participate in the gallery walk part of the activity.

Hawks and Eagles:
This activity is a version of “think-pair-share” that gets students up and moving around the classroom.

Suggested steps for implementation:
1. Students pair with someone nearby and decide who will be the Hawk and who will be the Eagle.
2. Give all students a prompt or topic to discuss and allow them time to think about their response (1-3 minutes).
3. Students share their responses with their paired partner (1-3 minutes).
4. Ask Hawks to raise their hands. Ask the Eagles to get up and go find a different Hawk.
5. Students share their responses with their new partner.
6. Repeat steps 4 and 5, if desired, to allow students to pair with multiple partners.
7. Debrief topic with the whole class.

  • Use Hawks and Eagles as an icebreaker activity for students to introduce and get to know one another.
  • Use this activity as a formative assessment to gauge student comprehension of a particular topic.
  • Expose students to multiple perspectives or viewpoints on a particular topic by having them engage with multiple partners.

IQ Cards:
IQ cards (“Insight/Question Cards”) is an exit ticket activity that acts as a formative assessment strategy. At the end of a class or unit, ask students to write down on an index card any takeaways or new information they have learned. On the other side ofStack of index cards. the card, ask them to write down any remaining questions they have about the lesson or unit. Collect student responses and share their “insights” and “questions” with the class at the next meeting.

  • Gather instant feedback from students and quickly assess their grasp of the material, noting where any changes or adjustments might be needed.
  • Reinforce knowledge by asking students to recall key concepts of the lesson or unit.
  • Use IQ Cards as a self-assessment activity for students to reflect on their own learning.

Do you have any additional low or no prep activities you use in the classroom? Please feel free to share them in the comments. If you have any questions about any of the activities described above or other questions about student engagement, please contact the CTEI – we are here to help!

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

References:
Baker, M. (2007). Music moves brain to pay attention, Stanford study finds. Stanford Medicine: News Center. Retrieved August 26, 2024, from https://med.stanford.edu/news/all-news/2007/07/music-moves-brain-to-pay-attention-stanford-study-finds.html

Image source: Jennifer Merrill, Pixabay

The Teaching Fellows Project: Community-based Learning in Baltimore City Schools

[Guest post by Katharine Noel, Associate Teaching Professor, Writing Seminars, Johns Hopkins University]

As a grad student, I was given three days of teacher training before being thrown into a classroom.  This was a composition class with fifty first-year students.  My pedagogical training – if you can call it that – included how to grade on a curve and how to confront cheating and plagiarism without using the words “cheating” or “plagiarism,” a dodge that would supposedly protect the university from lawsuits.  The focus on school protocols implied that teaching itself would be straightforward.  After all, as grad students, we were working at advanced levels; shouldn’t imparting a simplified version of our subject be easy?

Without any real idea of how to convey my “expertise,” I thought back to my own professors.  I wanted, of course, to emulate the best of them, teachers who’d connected with their students, creating excitement while at the same time expressing warmth and engagement.  And yet I’d learned just as many lessons – possibly more – from the ineffective teaching I’d observed: the professor who was charismatic and funny but seemed more concerned with making the students adore him than helping them engage with the subject.  Or the one who started discussions with questions so long and complicated – filled with backtracking, amendments, and counterarguments – that by the time she was finished, students had no idea what they were meant to discuss. Teachers who seemed dismissive or defensive.  Teachers too rigid to pivot; teachers too lax to have an overarching plan.

The Teaching Fellows and WBS mentors outside of a building in Baltimore.

The Teaching Fellows and WBS mentors on a teaching field trip to Baltimore Youth Arts, a creative entrepreneurship and job training program focusing on young people involved in the justice system

Recently, I’ve been reminded of this early teaching experience.  At Hopkins, I teach in The Writing Seminars department.  In addition to standard creative writing courses, for the last five years I’ve taught a community-based learning class in partnership with the nonprofit organization Writers in Baltimore Schools (WBS), founded by Hopkins alum Patrice Hutton. Thanks to  a grant from CTEI, this past year we expanded the class to become the year-long Teaching Fellows Project.

The Teaching Fellows – twelve undergraduates chosen by application from across KSAS – lead weekly creative writing groups in under-resourced elementary and middle schools across the city. The class they take with me provides training and support, as well as the opportunity to work closely with WBS mentors. We study topics like student-centered pedagogy, educational equity, and the social and political context in which Baltimore schools operate.  Writers in Baltimore Schools provides curriculum for teaching elementary and middle-school writing groups, but near the end of the year, each Hopkins student creates, teaches, and revises an original lesson plan based on the interests and needs of their students.

A guest lecture by Ms. Araba Maze, founder of Storybook Maze, which aims to increase book access in Baltimore’s book deserts

The CUE-2 final report stresses the importance of community-based and applied learning, stating that “we should aspire to transform the college experience from one composed solely of traditional elements – lectures, papers, problem sets, and exams – to one in which these elements sit amid a much broader range of learning activities.”  The Teaching Fellows Project is designed to provide this kind of community-based and applied learning opportunity, connecting academic theory to real-world impact. Students bring what they learn in our classroom to their worksites, and bring what they learn in their worksites back to our classroom. Knowledge gained from meaningful engagement in the community is deepened by the knowledge gained through reading, discussions, and guest lecturers, and vice-versa. At times, it all feels very meta: as I teach students to teach, I also point out the techniques and tactics I’m using as a teacher; as students encounter challenges at their worksites, I adjust my curriculum to address those topics that feel most relevant and vital.

One of the first exercises the Teaching Fellows do, based on my own early groping for models, is to think back to their best teachers and try to isolate what made them so effective. Some of these “teachers” are the ones they had in classrooms; others turn out to be coaches, bosses, ministers, co-workers, or relatives. The next week, we repeat the same exercise by discussing frustrating learning experiences.  The complicated interwoven skills of teaching can be most visible when they work together imperfectly, since excellent teachers achieve a kind of magic that means – as with any magician – their moves can be too deft to make out.

My scant training as a grad student seemed predicated on the idea that teaching could and should be easy. What the WBS mentors and I try to convey in The Teaching Fellows Project is very different: that teaching is often hard, confounding, overwhelming, and awkward – as well as thrilling, meaningful, revealing, and joyous.  It can even – at rare moments – feel nearly effortless.

Katharine Noel
Associate Teaching Professor, Writing Seminars
Johns Hopkins University

Prior to coming to Johns Hopkins, Katharine Noel was the Writer in Residence at Claremont McKenna College (2009 to 2013).  From 2002-2009, she was a Jones Lecturer at Stanford University, where she held Wallace Stegner and Truman Capote fellowships in 2000–2002. Before teaching at Stanford, she worked for two years at Gould Farm, a program in the Berkshire Mountains for adults with mental illnesses, and for four years at an Oakland, California shelter for women and children experiencing homelessness.  At Hopkins, in addition to teaching fiction writing, she directs The Teaching Fellows Project.

Image Source: Writers in Baltimore Schools

Lunch and Learn: Generative AI Uses in the Classroom

On Tuesday, April 23rd, the Center for Teaching Excellence and Innovation (CTEI) hosted a Lunch and Learn on Generative AI Uses in the Classroom. Faculty panelists included Louis Hyman, Dorothy Ross Professor of Political Economy in History and Professor at the SNF Agora Institute, Jeffrey Gray, Professor of Chemical and Biomolecular Engineering in the Whiting School, and Brian Klaas, Assistant Director for Technology and instructor at the Bloomberg School of Public Health. Caroline Egan, Teaching Academy Program Manager, moderated the discussion.  

Louis Hyman began the presentation by reminding the audience what large language models (LLMs) like ChatGPT can and cannot do. For example, ChatGPT does not “know” anything and is incapable of reasoning. It generates text that it predicts will best answer the prompt it was given, based on how it was trained. In addition to his course work, Hyman mentioned several tasks he uses ChatGPT to assist with, including text summarization, writing complicated Excel formulas, writing and editing drafts, making PowerPoint tables, and turning image files in the right direction.

In Hyman’s course, AI and Data Methods in History, students are introduced to a variety of tools (e.g., Google Sheets, ChatGPT, Python) that help them analyze and think critically about historical data. Hyman described how students used primers from LinkedIn Learning as well as Generative AI prompts to increase their technical skills which enabled them to take a deeper dive into data analysis. For example, while it would have been too complicated for most students to write code on their own, they learned how to prompt ChatGPT to write code for them.  By the end of the semester, students used application programming interface (API) calls to send data to Google, used OpenAI to clean up historical documents and images presented using optical character recognition (OCR), and used ChatGPT and Python to plot and map historical data.Two maps of 1850 New England showing the number of congregational churches and the value of congregational property. Data points plotted by students using AI.

Hyman noted that one of the most challenging parts of the course was convincing students that it was OK to use ChatGPT, that they were not cheating.  Another challenge was that many students lacked basic computer literacy skills, therefore, getting everyone up to speed took some time. There was also not one shared computer structure/platform. The successes of the course include students’ ability to use libraries and APIs to make arguments in their data analysis, apply statistical analysis of the data, and ask historical questions about the results they were seeing in the data.

Jeff Gray continued by describing his Computational Protein Structure Prediction and Design course that he has taught for over 18 years. In this course, students use molecular visualization and prediction tools like PyRosetta, an interactive Python-based interface that allows them to design custom molecular modeling algorithms. Recently, Gray has introduced open-sourced AI tools into the curriculum (AlphaFold and RoseTTAFold), which predict 3D models of protein structures.

Example of protein folding using AlphaFold.

One of the challenges Gray mentioned was the diversity of student academic backgrounds. There were students from engineering, biology, bioinformatics, computer science, and applied math, among others. To accommodate this challenge, Gray used specifications grading, a grading method in which students are graded pass/fail on individual assessments that align directly with learning goals. In Gray’s class, students were presented with a bundle of problem sets categorized at various difficulty levels. Students selected which ones they wanted to complete and had the option of resubmitting them a second time for full credit. Gray is undecided about using this method going forward, noting that half of the students ended up dropping the course when they tried to complete all of the problems instead of just a few, and found the workload too heavy.  Another challenge was how to balance the fundamental depth of the subject matter versus application.  To address this, Gray structured the twice weekly class with a lecture on one day and a hands-on workshop the other day, which seemed to work well.

Brian Klaas teaches a one credit pass/fail course called Using Generative AI to Improve Public Health. The goal of this course is to allow students to explore AI tools, gain a basic understanding of how they work, and then apply them to their academic work and research. In addition to using the tools, students discussed the possible harms in Generative AI, such as confabulations, biases, etc., the impact of these tools in Public Health research, and future concerns such as the impact on the environment and copyright law. Klaas shared his syllabus statement regarding the usage of AI tools in class, something he strongly recommends all faculty share with their students 

Hands-on assignments included various ways of using Generative AI. In one assignment, students were asked to write a summary of a journal article and then have GenAI write a summary of the same article geared towards different audiences (academics vs. high school students). Students were then asked to analyze the differences between the summaries.Sample instagram post created using AI showing people from different cultures dressed as medical professionals. For another assignment, students were asked to pick from a set of topics and use Generative AI to teach them about the selected topic, noting any confabulations or biases present. They then asked GenAI to create a five-question quiz on the topic and take the quiz. A final assignment was to create an Instagram post on the same topic including a single image and a few sentences explaining the topic to a lay audience. All assignments included a reflection piece which often required peer review.

Lessons learned: Students loved the interdisciplinary approach to the course, confabulations reinforce core data research skills, and learning from each other is key.

The discussion continued with questions from the audience: 

Q: What would you recommend to an instructor who is considering implementing GenAI in the classroom? How do they start thinking about GenAI?
JG: Jupyter notebooks are pretty easy to use. I think students should just give it a try.
LH: I recommend showing students what ”bad” examples look like. The truth is, we can still write better than computers. Use AI to draft papers and then use it as an editing tool – it’s very good as an editing tool. Students can learn a lot from that.
BK : I recommend having students experiment and see where the strengths lie, get an overall awareness of it. Reflect on that process, see what went well, not so well. Feed in an assignment and see what happens. Use a rubric to evaluate the assignment. Put a transcript in and ask it to create a quiz on that information. It can save you some time.

Q for Brian Klaas: What version of GPT were you using?
BK: Any of them – I didn’t prescribe specific tools or versions. We have students all over the world, so they used whatever they had. ChatGPT, Claude, MidJourney, etc. I let the students decide and allowed them to compare differences.

Q for Jeff Gray: Regrading the number of students who dropped, is the aim of the course to have as many students as possible, or a group who is wholly into it?
JG: I don’t know, I’m struggling with this. I want to invite all students but also need to be able to dig into the math and material. It feels like we just scratched the surface. Maybe offering an intersession course to learn the tools before they take this class would be helpful. There is no standard curriculum yet for AI. Where to begin…we’re all over the map as far as what should be included in the curriculum.
LH: I guess it depends on what your goals are. Students are good at “plug and chug,” but bad at asking questions like, “what does this mean?”
BK: We didn’t get to cover everything, either – there is not enough time in a one credit class. There are just so many things to cover.

Q: What advice do you have for faculty who are not computer scientists? Where should we start learning? What should we teach students?
LH: You can ask it to teach you Python, or how to do an API call. It’s amazing at this. I don’t know coding as well as others, but it helps. Just start asking it [GenAI]. Trust it for teaching something like getting Pytorch running on your PC. Encourage students to be curious and just start prompting it.
BK: If you’re not interested in Jupyter notebooks, or some of the more complicated functions, you can use these tools without dealing in data science. It can do other things. It’s about figuring out how to use it to save time, for ideation, for brainstorming.
JG: I have to push back – what if I want to know about what’s going on in Palestine and Israel? I don’t know what I don’t know. How do I know what it’s telling me is correct?
LH: I don’t use it for history – but where is the line of what it’s good and not good at?
BK: I would use it for task lists, areas to explore further, but remember that it has no concept of truth. If you are someone who knows something about the topic, it does get you over the hurdles.
JG: You have to be an expert in the area to rely on it.
LH: Students at the end of my course made so much progress in coding. It depends on what you ask it to do – protein folding is very different than history that already happened.

Q: How can we address concerns with fairness and bias with these tools in teaching?
BK: Give students foundational knowledge about how the tools work. Understand that these are prediction machines that make stuff up. There have been studies done that show how biased they are, with simple prompts. Tell students to experiment – they will learn from this. I suggest working this in as a discussion or some practice for themselves.

Q: Students have learned to ask questions better – would you rather be living now with these tools, or without them?
JG: Students are brainstorming better. They are using more data and more statistics.
BK: AI requires exploration and play to get good responses. It really takes time to learn how to prompt well. You have to keep trying. Culturally, our students are optimized for finding the “right answer;” AI programs us to think that there are multiple answers. There is no one right answer for how to get there.
LH: Using AI is just a different process to get there. It’s different than what we had to do in college. It was hard to use computers because many of us had to play with them to get things to work. Now it all works beautifully with smart phones. Students today aren’t comfortable experimenting. How do we move from memorization to asking questions? It’s very important to me that students have this experience. It’s uncomfortable to be free and questioning, and then go back to the data. How do we reconcile this?

JG: What age is appropriate to introduce AI to kids?
LH: Students don’t read and write as much as they used to. I’m not sure about the balance.
Guest: I work with middle and high school teachers. Middle school is a great time to introduce AI. Middle school kids are already good at taking information in and figuring out what it means. Teachers need time to learn the tools before introducing it to students, including how the tools can be biased, etc.

Q: How can we encourage creative uses of AI?
BK: Ethan Mollick is a good person to follow regarding creative uses of AI in education and what frameworks are out there. To encourage creativity, the more we expose AI to students, the better. They need to play and experiment. We need to teach them to push through and figure things out.
LH: AI enables all of us to do things now that weren’t possible. We need to remember it’s an augment to what we do, not a substitute for our work.

Resources:
Hyman slides
Gray slides
Klaas slides

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Hyman, Gray, and Klaas presentation slides, Unsplash

Lunch and Learn: Active Learning Techniques

On Tuesday, March 12th, the Center for Teaching Excellence and Innovation (CTEI) hosted a Lunch and Learn on Active Learning Techniques: Advice and Guidance from Experienced Faculty. Faculty panelists included Nate Brown, Senior Lecturer, University Writing Program (KSAS); Robert Leheny, Professor and Department Chair, Department of Physics and Astronomy (KSAS); and Michael Falk, Vice Dean of Undergraduate Education and Professor, Department of Materials Science and Engineering (WSE). Caroline Egan, Teaching Academy Program  Manager, moderated the discussion.

Caroline began the session by asking panelists how they got started with active learning and what they would recommend to those who were thinking about implementing it.

Nate Brown described how he heavily relied on his lecture notes to deliver content to students when he first started teaching. As he’s gained more experience, he’s moved away from using lecture notes and actively involves students in their learning.  Brown structures his classes now in such a way that the students drive the conversation and solve problems collectively, leading to greater retention of information and increased engagement. He makes a point of having students think about “why they are doing what they are doing.”

Robert Leheny recalled how the Provost’s Gateway Sciences Initiative from several years ago provided funding to support the redesign of gateway science courses, such as the Introduction to Physics course, which he teaches. The goal of the Gateway Sciences Initiative was to evolve the pedagogy in large introductory science courses to produce better student outcomes.

The Intro to Physics redesign, which was modeled after similar large lecture style courses at NC State and MIT, moved away from a traditional lecture style to a much more interactive experience. Students are divided into groups and sit at round tables instead of in rows, and they solve problem sets together during class rather than at home. This in-class work is partly enabled by a flipped classroom approach which enables students to review the content before coming to class. Leheny said the department now offers two versions of Introduction to Physics that students can select from: an active learning style and a more traditional auditorium/lecture style.

Michael Falk first started implementing  active learning by using  clickers in a 200-student Introduction to Computer Programming course at the University of Michigan several years ago. Since he’s been at Hopkins, his classes have been smaller, allowing him to approach active learning in different ways. Falk gave an example of how he flipped an upper-level materials science course (which is now also part of the Gateway Computing program) so that students work in an online textbook outside of class and do more collaborative work during class. Another example is a First-Year Seminar class taught by Falk, Turing’s Shadow: Uncovering What’s Hidden in STEM. This discussion-based course covers a range of topics, some of which are sensitive, and students are often afraid to speak up. To address this, Falk created a series of discussion cards to help ease students’ discomfort. The cards provide discussion prompts for students, such as “Clarification: Ask for further explanation about something,” and they also inject some fun elements into the conversation by asking respondents to present their response “in the form of a song,” or “while walking around the room very quickly,” for example. It turns the exercise into a game and helps students to feel more comfortable participating in class.

Caroline continued by asking the panelists what their definition of active learning is and to provide a counter-example of it, which would bring its definition into better relief.

NB:   I think it involves giving students a stake in what we’re doing. For example, helping to define the parameters of a paper we’re going to write. I see the professorial role as one of support, like “air traffic control.” With active learning, students are involved in the creation of their own learning.

RL: The primary component of active learning in physics is peer instruction. Students need to be able to solve problems. We don’t use class time to introduce students to concepts, but instead give students an opportunity to practice solving problems where there are resources to help facilitate these skills. For example, students are divided into groups of three and explain to each other how they would go about solving a problem. The act of explaining the problem to someone else helps to solidify their own understanding. A counter example would be the old way of the instructor speaking from the blackboard, talking uninterrupted for most of the class period.

MF: Active learning is learning by doing. Students are engaging with content in a supportive environment. We are teaching a different group of students at Hopkins now – there are many more first- generation, limited-income, and/or underrepresented students with very different backgrounds. We need to think proactively about leveling the playing field for students. This is evident in the data around class outcomes: classes taught using active learning techniques have lower levels of students failing or dropping out. This is even more true for students in underrepresented groups.

RL: We also see this in Intro to Physics. We have the two versions of the course: one in the auditorium (which may have some active learning elements in it), and one designed specifically as an active learning course. The homework and exams are the same in both courses. The outcomes show that failing grades are much less likely to occur in the active learning course.

MF: I used to think my job as an instructor was to deliver content and material. Now, with active learning, I think my job is to deliver an experience.

Caroline continued by asking panelists for a simple active learning technique that instructors can implement right away.

NB: This may sound crazy – it comes from a writer colleague of mine. I was having students read out loud in class and noticed they were struggling: they didn’t feel comfortable, they were shy, or were experiencing language barriers, etc. I then asked them all to read in chorus (at the same time). No one understood what they were hearing, but it shocked them into it being ok to share. It really helped them get over their nerves.

RL: Think-Pair-Share. This technique works very well in a large lecture environment. We give students a multiple choice question and have everyone vote on the answer. Next, they have to find someone who voted differently and try to convince them to change their answer. We then ask students to vote again. The results are that there are usually more correct answers the second time. You do need good questions for this to be effective.

MF: An idea for STEM classes, figure out a way to shorten your lecture and hand out the problem set at the end of class. Allow students to work on them with each other. Ask students to write down the steps on how they would solve the problem, but not actually solve it. Allow time for a report out at the end. This gives them a chance to support each other while organizing information.

CE: A complimentary Humanities example: In my first-year writing class, I hand out labeled strips of paper to students with our class readings on them and ask them to organize the strips in a way that would help the students use the readings in their papers. Also, I give students writing prompts, break them into groups, and ask them to find out where they would find the answers to the prompts. This helps to get them in the right mindset of locating good sources.

Two other examples of active learning were mentioned by faculty guests. One instructor explained how she has students use Legos to construct the analysis of an argument. They connect more and more Legos to build supportive elements of their argument and take away those that they disagree with. Another instructor mentioned that she has students act out responses in class.

The session continued with questions from the audience for the panelists:

Q: In reference to Think-Pair-Share, have you observed any competitiveness among students or reluctance to participate in these activities?
MF: We tell students it has nothing to do with their grade.
RL: We do the same. We also tell them there is no curve and it is possible for everyone to get an A, which reduces overall competitiveness.
NB: One of the great things about this exercise, where students are engaging with each other, is that they get to hear from peers that are from all over the world. We turn it into a social space where they can feel comfortable sharing.

Q: (From a librarian) I recently had about 30 minutes to work with students in a research class. I received feedback from a student that I didn’t do enough active learning in the class, despite doing a brainstorming exercise with them. What do you do when you need more active learning in such a short amount of time?
RL: Explain to students why you structured the class like you did. It will help if you get their buy-in. Maybe the answer is to announce at the beginning that what you’re doing is in fact active leaning.
MF: Students like playing – it makes for a positive learning experience. Perhaps turn part of it into a game/play. And then explain what and why you’re doing it this way.

Q: Are there any active learning experiences to share when you’re guest lecturing? Do you use the same or different strategies?
MF: It needs to be a different strategy. As a guest, you don’t have the advantage of repetition or control of the environment. Explain to students what you’re doing and do the best you can with the constraints that you’re under.
CE: Be very intentional about your choices. At the end, ask them one thing they will remember from the class. This is a good recall exercise.
NB: As a guest speaker, you already are a bit novel since your presence is different than their regular day. Maybe use a novel activity that they will remember.

Q: Could you each share how you put groups together intentionally instead of having students self-form?
RL: Students are put into groups of three. Groups are engineered this way – we switch a few times during the semester. The students don’t know it, but we add them to groups according to their performance on the midterm. In each group, there is one person that scored at the top, one from the middle, and one from a low level. The top level person gets more practice articulating ideas. The lower level person gets the benefit of working with someone who has command of the material. We also group according to gender: we avoid placing two men and one woman in a group to avoid women being excluded. There is research that supports this.
NB: We also do a lot of group work. Halfway through the semester, I ask students to work with someone they haven’t worked with before. I also ask them to sit next to someone different. It results in a richer peer review experience.
MF: I have students do a self-assessment at the very beginning of the course and use the results of the assessment to group students.

For more information about the active learning topics discussed at the event, please see this  Active Learning For Distribution folder of materials developed by Caroline Egan.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image source: Lunch and Learn logo, Unsplash, Pixabay

Preparing to Teach: Lessons from a Gamemaster

Once upon a time, just before the age of COVID-19, I was asked to teach a course for an undergraduate minor program through JHU’s Center for Leadership Education. I began my journey to teaching my first course by meeting the program director for lunch. After the proposition, it became clear to me that there was sparse content for this new course on data visualization, and it would be up to me to develop and deliver it the following semester. With only a few months to prepare, I quickly realized that my quest to create something from nothing would be full of challenges that might result in a perilous journey, but the bounties were rumored to be plentiful.

When I started to delve into the instructional design of my course including developing content, setting learning goals, and creating a syllabus, I was delighted by the discovery that there are many parallels between designing a course and creating an adventure for Dungeons and Dragons (D&D). D&D is a type of role-playing game where players take on roles of fictional characters and attempt to complete a fantasy adventure designed and delivered by the Dungeon Master (I will use the term “gamemaster” for its broader applicability). In a D&D adventure, the gamemaster introduces the fantasy world to the players and presents challenges for them to overcome by performing actions as their characters.  As a gamemaster, I realized that I had resources that would help me structure the course, plan activities, and engage my students.

Learning Goals vs Plotline

One of the first parallels I found was that the learning goals provided a structure much like plot elements would provide a structure to a D&D adventure. The gamemaster tells stories and sets the stage for the players to interact, and, with the stories, they build on each other to an eventual climactic event. In both cases, you have to sequence the elements in a logical way that builds up to the desired result such as a learning goal or a successful adventure. For instance, one of my learning goals was to have students apply visual design principles to different types of presentations of data. I invested time up front in my course structure to ensure students knew a variety of data visualization types, could identify design principles that work for each, and had practice applying those design techniques. Ensuring your participants are adequately prepared for their true test is important, whether it be acing their final project or slaying an evil dragon.

Activities vs Encounters

Planning activities for each class felt closely related to the gamemaster’s balancing act of creating encounters for their players. In D&D, each player controls a character with specific abilities set by their current level. As a character gains experience, they unlock more abilities as they reach the next level. The gamemaster has to make sure that at each level, the challenge of each encounter is commensurate with the players’ levels to keep them engaged.

For many weeks in the course, I highlighted a topic that would span two class periods that bookended the weekend. Before the first day, there would be a reading to introduce the topic, followed by a lecture at the beginning of the first day to expand on the topic (the background). Then, the students would work on an activity in class, most times in groups, that utilized the concepts presented in the introduction (an encounter). At the end of the activity, we would chat about the results and the related assignment that would be due the following week (rest and reflect). During that weekend, the students would have a short reading that was relevant to the topic and would complete their assignment (continued journey). On the second day for that topic, we would begin the class with a zero-stakes quiz that was based on the readings and mini lecture (another encounter). We then discussed the assignment submissions in a class critique, offering feedback and best practices in a safe setting (the aftermath). The last portion of the class would expand on the topic with one last activity on the topic (gain experience).

Being a Good Host

Just like sitting down for a game of D&D, when teaching your class, you are welcoming students into your space.  It’s not a space you own, but it is one in which you have control over the tone and the proceedings. As a good host, whether for a dinner party, a classroom activity, or a D&D adventure to clear out a cave of kobolds, you must be aware of how your guests are responding to the experience. In the case of D&D, that means being aware of how each player is interacting and contributing to the story you are building together. From the classroom perspective you should be similarly mindful of student engagement and progress. You can achieve this not only with summative assessments (the results from quizzes, assignments, etc.) but also formative assessments (ungraded quizzes, surveys, etc.). For example, a mid-semester survey can help inform you of what the students are enjoying about the class, what could make it better, and any issues with the content that they are having trouble with.

Side Quests

The concept of a Side Quest in gaming refers to an optional task to achieve a supplemental benefit for your character. I used this concept to offer extra-credit assignments that would allow the students to gain bonus points towards assignments, participation, or the final project. The Side Quests provided the opportunity for the students to reengage with the content, give them more data visualization practice, or reflect deeper on topics. The following are examples of a few of my favorite Side Quest assignments:

  • Find the Gestalt!”: Students find a data visualization and describe what gestalt technics were used and where. This provided more practice identifying technics in the wild.
  • You be the Instructor!”: Students develop up to five challenging quiz questions from the course content that had accurate answers. This allowed them to think deeper about a topic.
  • Journal of the Journey!”: Students submit pages from their class notes/sketchbook. This incentivized them to record tidbits from class that they found interesting, which gave me feedback on the parts of the course that resonated with the students.

Final Thoughts

D&D helped me to pull from years of experience as a gamemaster. In the end, as long as you are thoughtfully guiding your participants/students/adventurists to new heights through balanced challenges, they will all surely level up to be ready for their next adventure.

Reid Sczerba, Digital Solutions Designer
Center for Teaching Excellence and Innovation

Image Source: Reid Sczerba, Pixabay

This blog post was adapted from the full article, “Lessons from a Gamemaster,” which is part of our printed Innovative Instructor series.

Quick Tips: Facilitating Group Work

With good reason, one of the most common strategies that instructors turn to in the classroom is assigning students to work collaboratively in groups.  Group work, when thoughtfully designed and facilitated, can be a very effective way to engage students in their learning. Though not without challenges, group work offers numerous benefits: 

  • Increased engagement: Group work promotes active engagement and collaboration among students, which can help build a sense of community in the classroom. The learning process becomes more interactive which can deepen the level of understanding of course material and positively impact classroom dynamics.  
  • Diverse perspectives: Group work encourages the exchange of diverse ideas and perspectives. This can lead to a richer learning environment as students are exposed to different viewpoints and alternative solutions to problems.  
  • Skill development: Working in groups, students acquire a range of skills, including communication, problem-solving, and leadership skills. While certainly relevant in academia, these skills can also help students prepare for a professional work environment, where teamwork and collaboration are essential. 

Simply dividing your students into groups with little or no direction is unlikely to lead to the best outcome. Incorporating group work into courses requires careful planning and clear guidelines to ensure its effectiveness. The following is a list of strategies to consider when facilitating group work: 

Group formation:  

  • Consider aligning students with complementary or diverse skill sets. A broad range of skills often leads to creative ways of approaching and solving problems. Administering a survey to students before the project begins can help determine academic disciplines, backgrounds, and relevant skill levels.  
  • When possible, avoid isolating underrepresented minorities in groups. For example, place 0, 2, or 3 women in a team when forming groups of 3 (i.e., do not create a team of 1 woman and 2 men). This helps prevent the underrepresented from being over-ruled or ignored (Rosser, 1998).   
  • Explore technology options. If using a learning management system (LMS) such as Canvas, it will often include a tool to assist with creating and managing groups. Outside of the LMS, there is a free, open-source tool called gruepr that can assist instructors with group creation. CATME is another tool that assists with group creation and peer review. We reviewed CATME several years ago when it was free, but there is now a fee for use. 

Team Interaction: 

  • Establish ground rules for groups: insist on civil dialogue, respect others’ opinions, listen actively, etc. Involving students in creating the rules helps them hold each other accountable throughout the process. Carnegie Mellon has a resource with suggestions for setting ground rules that may be helpful for instructors. 
  • Assign each student a different role in the group and rotate the roles frequently. This helps to ensure that work is distributed equally throughout the project, avoiding situations where a few students are doing all the work while others are just along for the ride (Finelli et all., 2011). Examples of roles include recorder, spokesperson, summarizer, organizer, observer, timekeeper, or liaison to other groups.  Be sure each role has specific tasks that are clearly laid out for students.  
  • Include one or more short, introductory warm-up activities for group members to engage and get to know one another. This will help to build rapport and encourage participation within the group. 
  • Consider the physical space if allowing students to work in groups during class. Is the room conducive/comfortable for small groups to convene? Will students need accommodations? If teaching online, are groups meeting synchronously or asynchronously? Plan accordingly to anticipate space and technology needs.  

Assessment: 

  • Determine how you will assess the project. Depending on the goals, consider assessing both group and individual contributions. Develop and share rubrics with students so they know exactly what is expected. This sample group work rubric from Carnegie Mellon can be used as a guide. 
  • Meet regularly with each group to monitor progress. Set milestones to help students stay on track and meet their goals.
  • Include opportunities for self and peer assessment. Self-assessment encourages critical thinking and fosters greater self-awareness in student learning.  Peer assessment provides valuable insight for instructors about group dynamics and performance. It can also serve to motivate students to take responsibility for their individual tasks. Be sure to clarify for students if self and peer assessment will count towards their grade.  This assessment form from Carnegie Mellon is designed for students to assess themselves as well as group members.  
  • Allow time for reflection. Asking students to reflect on the process can help them extract meaningful lessons from the project’s successes and challenges.  It can also promote a deeper understanding of the project’s goals and the collaborative process as a whole. Examples of reflective exercises include written responses to specific prompts (i.e. what went well, what could be improved, etc.), small group or whole class discussions, and keeping a journal of the learning experience. More information about group reflection can be found in this resource from the University of New South Wales.   

With proper planning, group projects can be a positive and productive learning experience that will help prepare students for real-world challenges. Do you have additional tips to share about group facilitation? Please share them in the comments. 

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation

Image source: Pixabay

References:

Finelli, C., Bergom, I., & Mesa, V. (2011). Student teams in the engineering classroom and beyond: setting up students for success. Center for Research on Learning and Teaching: University of Michigan. https://files.eric.ed.gov/fulltext/ED573963.pdf  

Rosser, S. V. (1998). Group work in science, engineering, and mathematics: Consequences of ignoring gender and race. College Teaching, 46(3), 82-88. 

University of New South Wales. (n.d.) Supporting students to reflect on their group work. https://www.teaching.unsw.edu.au/helping-students-reflect-group-work

Washington University of St. Louis, Center for Teaching and Learning. (n.d.) Facilitating in-class group work. https://ctl.wustl.edu/resources/facilitating-in-class-group-work/ 

Facilitating Difficult Conversations in Class: Considerations when Teaching Online

In a recent blog post, the CTEI shared strategies that can be used to facilitate difficult conversations in the classroom. The center also hosted a community conversation on the same topic, featuring perspectives from three different faculty members from across the institution. In response, we heard from some instructors who are interested in specific strategies they can use in an online environment. While many of the ideas previously shared can be applied to the online classroom, such as setting ground rules, the following considerations are worth keeping in mind when facilitating difficult conversations online.

  • Establish a positive classroom climate. This is especially important in an online environment where subtle gestures, voice inflections, and facial expressions may be missing. Creating a safe, inclusive environment from the start will encourage student participation and respect among peers. Some ideas include:
    • Engage students in icebreaker or other collaborative activities to ensure multiple opportunities for students to get to know one another.
    • Include a syllabus statement with language expressing a commitment to respecting diverse opinions and being inclusive. Model this commitment by using students’ preferred names, pronouns, inclusive language, and diverse examples. See a recently shared example from Professor John Mercurio in The Chronicle.
    • Communicate regularly with students. Send weekly reminders, post regular announcements, and commit to responding promptly to discussion board posts from students to help them feel connected to the class and to each other.
  • As part of setting ground rules, remind students of “netiquette;” be very clear about rules for online discussions, group interactions, when/if it’s okay to use the chat feature, etc. Consider involving students in creating these rules.
  • Lack of privacy – remember that students on Zoom are not necessarily in a private space and may not feel comfortable speaking or engaging freely with others. Communicate alternate ways for students to engage, such as using chat, polls, or an asynchronous discussion board.
  • In hybrid classes, make sure to include Zoom participants in the discussion. This may require additional or amended ground rules such as requiring everyone to raise their hand (Zoom and in-person participants) before making a comment.
  • Acknowledge and accept that there may be (uncomfortable) pauses due to a bad online connection or people gathering their thoughts.
  • Consider using breakout rooms for students to discuss issues in small groups which may be more comfortable/less intimidating for some.
  • Consider using the chat feature to allow students time to reflect on their response before sharing. The faculty can then selectively address comments shared by students including contextualizing or reframing points made. If you have a co-instructor or teaching assistants, they can help with replying directly to comments posted in the chat.
  • Establish a set of gestures/emojis to be used when asking a question, adding a follow-up idea, agreeing or disagreeing, etc. to keep interruptions to a minimum. (This requires everyone to be in grid view.)
  • As much as possible, keep an eye on Zoom participants for indications of distress. Encourage students to take advantage of university wellness resources.
  • For larger discussions, consider using a Zoom webinar in which you can moderate questions and comments submitted before sharing them. In typical Zoom classrooms, you can ask students to send their comments directly to you in the chat instead of posting to the entire group.

Do you have additional ideas to share? Please post them in the comments.

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image Source: Unsplash

References:

Rudenko, N. (August, 12, 2020). Facilitating discussions via Zoom (in a college-level classroom). Medium. https://medium.com/@natasharudenko_37929/facilitating-discussions-via-zoom-in-a-college-level-classroom-619d3ac4343b

Supiano, B. (November 9, 2023). Teaching: How to hold difficult discussions online. The Chronicle of Higher Education.
https://www.chronicle.com/newsletter/teaching/2023-11-09?utm_source=Iterable&utm_medium=email&utm_campaign=campaign_8238698_nl_Teaching_date_20231109&cid=te&source=ams&sourceid=&sra=true

Community Conversation: Facilitating Difficult Conversations in the Classroom

The Center for Teaching Excellence and Innovation (CTEI) hosted a community conversation on Facilitating Difficult Conversations in the Classroom on Thursday, November 9th, as a follow-up to our recent blog post on the same topic.  The faculty panel included: Sherita Golden, Chief Diversity Officer at the School of Medicine & Hugh P. McCormick Family Professor of Endocrinology and Metabolism, Andrew Perrin, SNF Agora Professor and Department Chair of Sociology, and Mike Reese, Associate Dean of the Center for Teaching Excellence and Innovation & Associate Teaching Professor of Sociology. Caroline Egan from the CTEI facilitated the event.

Mike Reese opened the conversation by acknowledging that current events are an opportunity to apply course concepts but the instructor’s goal is to maintain civility on sensitive topics. He described some of the strategies he uses in his classroom, such as setting ground rules for class discussions. Reese explains the intentions of the rules to his students, which is to create a space that makes everyone feel comfortable participating. Some of his ground rules include:

  • Support arguments with evidence
  • Use ‘I’ statements – do not speak for others in the class
  • Do not generalize about groups
  • Allow students to speak without interruption (with caveat that the instructor can cut them off if they go on too long)
  • Listen actively – be open to what others are saying
  • Name-calling, sarcasm, inflammatory accusations are not permitted

Reese noted in his classes that historically the issue is less conversations becoming heated and more that students are hesitant to talk about politically-charged topics. He mentioned strategies to spark engagement, such as having students first work in small groups to discuss a topic. He also uses structured debate activities where students are assigned a specific perspective. In the debate activity, the pressure is taken off of the student since the role/perspective is assigned by the instructor.

In cases of traumatic events, Reese stated that instructors are not required to discuss the topic if they are not comfortable doing so, but should at least acknowledge the event. Research suggests students want events to be acknowledged, not ignored. Reese shared that a student this past week shared they don’t need to discuss the issue in every course, as the constant reminder may be counterproductive, but would prefer to discuss the event in courses that speak directly to the issue. The main message is be intentional about how you plan to discuss traumatic events and what boundaries you will place on the conversation before arriving to class.

Andrew Perrin continued the conversation by describing two principles he subscribes to:

  1. While all people deserve safety, no ideas deserve safety. The way we honor ideas is by submitting them to rigorous argument and evidence and testing them out.
  2. Emotions running high is not a reason to avoid discussions – it’s a reason to have better discussions. Explain and demonstrate to students how to listen thoughtfully to ideas and make judgments based on evidence.

While he supports Reese’s ground rules, Perrin takes a slightly different approach: he will often set the context for students, explain a scenario, and have them listen to their peers discuss the issue, recognizing their own ideas may turn out to be wrong. His pedagogical goal is to make sure that all reasonable ideas are raised so that they may be examined and challenged. At times Perrin will make arguments that he doesn’t believe in because he feels it’s important for them to be part of the conversation.

He believes most students politically are not committed either to the left or the right; they might be in between, they might not have thought about it much, or they might have mixed opinions. The instructor’s job is to make sure the debate includes more ideas than just those from the 5-10% on the right and left. Perrin acknowledged that it might be hard to engage on difficult topics and students might be uncomfortable, but that is an acceptable outcome in a university classroom. He stated, “Too often we think the goal is to come to consensus. I think the goal is to understand why people feel the way that they do.”

Sherita Golden teaches medical students in a clinical environment as well as staff from all parts of the medical establishment.  One of the issues that she addresses in her classroom is why we continue to see inequities in health, for example, the inequity of non-whites consistently having a higher prevalence of diabetes than whites.  Golden explains to her students how historical discrimination and racism dating back to the time of enslavement have led to the current situation; eugenics theory suggesting the biological inferiority of non-white populations, trust violations by the medical establishment due to unconsented experimentation on enslaved and marginalized communities, as well as healthcare clinician bias against minoritized patients. These are all factors adversely affecting healthcare quality and access today. Another example is the historic practice of redlining, which made it more difficult for African-Americans to obtain mortgages and build wealth through their homes. Golden uses these historical contexts to explain the roots of current social movements to her students and health system staff.

Golden acknowledged that conversations can become politically charged and offered the following suggestions to help diffuse the situation:

  • Acknowledge the humanity of the person speaking – listen with compassion and intent to respond rather than react.
  • Commit to providing information to the person if you aren’t sure how to address the issue in the moment.
  • Adopt a learner’s mindset:
    • What is the historical context of the issue?
    • What do you know about the lived experiences of those expressing the concern?
    • How might you benefit from knowing more in your teaching/leadership role?
  • Recognize that there are two sides to every story and the truth is somewhere in the middle.

The discussion continued with panelists taking questions from participants.

Q : I appreciate your [Perrin’s] idea of exploring other ideas of a particular subject, but at the same time, as we examine these charged issues and try to be objective, sometimes the discussion becomes politically neutral. I’m struggling with how I can resolve this issue of technical neutrality.

AP: I don’t think there are 2 sides, but actually 4, 5, or even more sides to every story. There are lots of different dimensions. One reason I don’t ask students to debate positions according to what I’ve set is because I think it is important for them to feel like what they’re saying matters and that they care about the issue. I’m not trying to say, “all ideas are fine” but instead, “all ideas deserve to be listened to.”  I do think historical context is important, as well as real world evidence, so it’s important not to let them stick with things that aren’t true.

MR: The classroom space allows students to voice lots of different ideas, and sometimes students come out not knowing where to go from there. Here is where reflection may help – ask them to articulate how they have moved on a particular issue, if at all.

SG: The goal is not to come to a resolution, but help them improve their argument and use of evidence. I encourage students to read constantly – learning is a lifelong process. Reading will help me (and them) back up why I feel a certain way, with evidence.

Q: How do you create space to honor opinions that you feel are wrong or will harm others?

AP: The key is how we say things. There is a reason to challenge the idea because it’s there – it is also submissible to evidence. The person should be able to explain why they think what they think. It really is important for people to be pushed to explain why they think this or that, where is the evidence, what makes this true. I like to ask, “Is there anything you could learn that, if true, would end up changing your position on this?” It is important to distinguish between what is true and what people think. So even potentially harmful ideas need to be discussed, if only to bring evidence to show why they are harmful. That said, it is also important to protect students who may be hurt. I will sometimes remind students that there are probably other students in the room who may be negatively affected by what they’re saying.

Guest: This makes me think about a case in class: we watched a film about a kidnapped woman in China who was sold to a villager as a wife. In the film there was a sympathetic attitude to the men in the villages that I disagreed with. This kind of sentiment was hard to watch.

MR: This is why reflection as the instructor is important, too.  If the discussion did not address your goals for the class, then perhaps reflect on how you might structure it differently next time.

SG: One of my favorite phrases to use in these situations: “Help me understand why you made that comment… What is at the root of what you’re saying?” I work in a clinical setting as well as an educational setting. We must show dignity and respect to all patients. We fall back to the core values of JH medicine: we need to be respectful of different points of view and perspectives.

Q: How do you de-escalate a conversation when it becomes highly charged?

AP: I like charged topics, I don’t feel scared of them. I like to ask students: “Why do you think that, what makes you say that, what do you think your opponents think?” It’s not useful for me to throw around “flashpoint” words; it works better for me to stick to the questions I just mentioned. In the classroom, you do have to move forward at some point. I ask the questions and try to keep the conversation moving.

MR: It’s also ok to take a break.

SG: I suggest listening sessions. This is a very important way to learn – let the person talk, we can all learn from that.

 

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image Source: Unsplash

Lunch and Learn: Generative AI – Teaching Uses, Learning Curves, and Classroom Guidelines

On Tuesday, October 3rd, the Center for Teaching Excellence and Innovation (CTEI) hosted its first Lunch and Learn of the academic year, a panel discussion titled, “Generative AI: Teaching Uses, Learning Curves, and Classroom Guidelines.” The three panelists included Jun Fang, Assistant Director of the Instructional Design and Technology Team in the Carey Business School, Carly Schnitzler, KSAS instructor in the University Writing Program, and Sean Tackett, Associate Professor in the School of Medicine.  The discussion was moderated by Caroline Egan, project manager in the CTEI. Mike Reese, director of the CTEI, also helped to facilitate the event. 

The panelists began by introducing themselves and then describing their experiences with generative AI. Jun Fang loves new technology and has been experimenting with AI since its inception. He noticed the faculty that he works with generally fall into two categories when it comes to using AI: some are quite concerned about students using it to cheat and are not ready to use it, while others see a great deal of potential and are very excited to use it in the classroom.  In speaking with colleagues from across the institution, Fang quickly realized these are common sentiments expressed by faculty in all JHU divisions. This motivated him to lead an effort to create a set of AI guidelines specifically geared toward faculty. The document contains a number of strategies for using AI including: designing engaging course activities, providing feedback for students on their assignments, and redesigning course assessments. The section on redesigning course assessments uses two approaches: the “avoidance approach,” which involves deliberately designing assessments without AI, and the “activation approach,” which intentionally integrates AI tools into the curriculum. The document includes specific examples of many of the strategies mentioned as well as links to widely used generative AI tools. 

Fang described a recent scenario in which a faculty member was concerned that students were using ChatGPT to generate answers to online discussion board questions.  To mitigate this situation, Fang suggested the faculty member revise the questions so that they were tied to a specific reading or perhaps to a topic generated in one of his online synchronous class sessions.  Another suggestion was to have students submit two answers for each question – one original answer and one generated by ChatGPT – and then have the students compare the two answers.  The faculty member was not comfortable with either of these suggestions and ended up making the discussion more of a synchronous activity, rather than asynchronous.  Fang acknowledged that everyone has a different comfort level with using AI and that one approach is not necessarily better than another.     

Carly Schnitzler currently teaches two introductory writing courses to undergraduates and is very open to using generative AI in her classroom.  At the start of the semester, she asked students to fill out an intake survey which included questions about previous writing experiences and any technologies used, including generative AI. She found that students were reluctant to admit that they had used these technologies, such as ChatGPT, for anything other than ‘novelty’ purposes because they associated these tools with cheating. After seeing the results of the survey, Schnitzler thought it would be beneficial for students to explore the potential use of generative AI in class. She asked students to do an assignment where they had to create standards of conduct in a first year writing class, which included discussing their expectations of the course, the instructor, their peers, and how AI would fit in among these expectations. The class came up with three standards: 

  1. AI tools should support (and not distract from) the goals of the class, such as critical thinking, analytical skills, developing a personal voice, etc.  
  2. AI tools can be used for certain parts of the writing process, such as brainstorming, revising, or editing, but students must disclose that AI tools were used. 
  3. If there appears to be an over-use or over-reliance on AI tools, a discussion will take place to address the situation rather than disciplinary action. (Schnitzler wants students to feel safe exploring the tools without fear of repercussion.) 

This assignment comes from an open collection of cross-disciplinary assignments that use text generation technologies, mostly in a writing context. TextGenEd: Teaching with Text Generation Technologies, co-edited by Schnitzler, consists of freely accessible assignments submitted by scholars from across the nation. Assignments are divided into categories, such as AI literacy, rhetorical engagements, professional writing, creative explorations, and ethical considerations. Most are designed so that the technologies used are explored by students and instructors together, requiring very little ‘expert’ technological skills.  Schnitzler noted that there is a call for new submissions twice each year and encouraged instructors to consider submitting their own assignments that use text generation AI.

Sean Tackett was initially fearful of ChatGPT when it was released last year. Reading article after article stating how generative AI was going to “take over” pushed him to learn as much as he could about this new technology. He began experimenting with it and initially did not find it easy to use or even necessarily useful in his work with medical school faculty. However, he and some colleagues recognized potential in these tools and ended up applying for and receiving a JHU DELTA grant to find ways they could apply generative AI to faculty development in the medical school. Tackett described how they are experimenting with generative AI in a curriculum development course that he teaches to the med school faculty. For example, one of the tasks is for faculty to learn to write learning objectives, so they’ve been developing prompts that can be used to specifically critique learning objectives. Another example is developing prompts to critique writing. Most of Tackett’s students are medical professionals who do not have a lot of time to learn new technologies, so his team is continually trying to refine prompts in these systems to make them as useful and efficient as possible. Despite being so busy, Tackett noted the faculty are generally enthusiastic about having the opportunity to use these tools.     

The discussion continued with a question and answer session with audience members: 

Q: How do we transfer and integrate this knowledge with teaching assistants who help manage the larger sized classes? What about grading?
ST: I would advocate for the potential of AI to replace a TA in terms of grading, but not in terms of a TA having a meaningful dialogue with a student. 
JF: Generative AI tools can be used to provide valuable feedback on assessments. There are a lot of tools out there to help make grading easier for your TAs, but AI can be used for the feedback piece. 

Q: How might professors provide guidelines to students to use generative AI to help them study better for difficult and complex topics?
MR: One possibility is to generate quiz questions – and then have students follow up by checking the work of these quizzes that have been generated.
CS: Using a ChatGPT or other text generation tool as a reading comprehension aid is something that has been useful for non-native English speakers. For example, adding a paragraph from an academic article into ChatGPT and asking what this means in plain language can be helpful.

CE: This gets to what I call ‘prompt literacy,’ which is designing better prompts to give you better answers. There is a very good series about this on Youtube from the University of Pennsylvania.
Sean, what have you experienced with prompting right now, in terms of challenges and opportunities?
ST: We’re trying to put together advice on how to better prompt the system to get more refined and accurate answers. After a few iterations of prompting the system, we refine the prompt and put it into a template for our faculty, leaving a few ‘blanks’ for them to fill in with their specific variables. The faculty are experts in their subject areas, so they can tell if the output is accurate or not. We’re in the process of collecting their output, to put together best practices about what works, what does not work.  

CE: What would you all like to see in terms of guidelines and best practices for AI on a web page geared towards using AI in the classroom?
Guest: And along those lines, how to we move forward with assigning research projects, knowing that these tools are available for students?
ST: I think it could be useful for students to learn research skills. They could use the tools to research something, then critique the results and explain how they verified those results. It can also be useful for generating ideas and brainstorming. Another thought is that there are a number of domain specific generative AI databases, such as Open Evidence which is useful in the medical field.  
CS: To Sean’s point, I think a comparative approach is useful with these tools. The tools are very good at pattern matching genre conventions, so doing comparative work within a genre could be useful.
JF: I think ChatGPT and other generative AI tools can be useful for different parts of the research process, such as brainstorming, structure, and editing. But not for something like providing or validating evidence.  

Q: As a grad student, I’m wondering how the presence of AI might force us to refine the types of questions and evaluations that we give our students. Are there ways to engineer our own questions so that the shift of the question is changed to avoid the problem [of having to refine and update the question] in the first place?
CS: There is an assignment in our collection that talks about bringing an assignment from past to present. Again, thinking in terms of a comparative approach, ask ChatGPT the question, and then ask your students the same question and see how they compare, if there are any patterns.  I think it can be helpful to think of ChatGPT as adding another voice to the room.
JF: We have a section in the guidelines on how to redesign assessment to cope with generative AI related issues. We suggest two approaches: the avoidance approach and the activation approach. The avoidance approach is for faculty who are not yet comfortable using this technology and want to avoid having students use it.  One example of this approach is for faculty to rework their assignments to focus on a higher level of learning, such as creativity or analysis, which will hopefully reduce or eliminate the opportunity for students to use AI tools. The activation approach encourages faculty to proactively integrate AI tools into the assessment process. One example of this approach I mentioned earlier is when I suggested to a faculty member to rework their discussion board questions to allow students to submit two versions of the answers, one created by them and the other by ChatGPT, and then analyze the results. 

Q: What is the ultimate goal of education? We may have different goals for different schools. Also, AI may bridge people from different social backgrounds. In China, where I grew up, the ability to read or write strongly depends on the social status of the family you come from. So there is some discomfort using it in the classroom.
CS: I feel some discomfort also, and that’s what led to the development of the guidelines in my classroom. I posed a similar question to my students: if we have these tools that can allegedly write for us, what is the point of taking a writing class?  They responded by saying things like, “writing helps to develop critical thinking and analytical skills,” to which I added, “being here is an investment in yourself as a student, a scholar, and a thinker.” I think asking students to articulate the value of the education that they want to get is really helpful in determining guidelines for AI.
ST: Going to school and getting an education is an investment of your time. You pay now so you can be paid later. But it’s not as transactional as that. AI is already in the work environment and will become more prevalent. If we’re not preparing students to succeed in the work environment, we are doing them a disservice. We teach students to apply generative AI in their classes so they are prepared to use it in the workforce.
JF: In the business school, everything is market driven. I think education can fit into that framework as well. We’re trying to provide graduates with the confidence they need to finish the work and meet the market’s need. We know that generative AI tools have really changed the world and they’re starting to emerge in every part of our life. We need to train students to realize that ChatGPT might be part of their education, part of life in the future, and part of the work in the future as well. There are things AI can help us do, but there are still fundamentals that students need to learn. One example is calculators: we still need to learn from the beginning that 1 + 1 = 2. 
CE: This question also reminded me of asking your students, what is the ultimate purpose of a research paper? Where do they think ChatGPT should fit into the research process?  

Q: I work at the library and we’re getting lots of questions about how to detect if students are using AI. And also, how do you determine if students are relying too heavily on AI?
JF: We also get this question from our faculty. The most used detection tool right now is Turnitin, which is embedded in Canvas. But the level of accuracy is not reliable. We encourage faculty to always validate before accepting the results.  For faculty who are actively using AI in the classroom, we also encourage them to provide clear guidance and expectations to students on how they are allowed to use it.  This may make it a little easier to determine if they are using it correctly or not.
MR: There are some other tools out there, such a GPTZero, ZeroGPT, but to Jun’s point, the difficult thing is that it’s different than plagiarism detection which says this is copied, and here’s the source. These tools say there’s a probability that part of this was taken, but you can’t point to a direct source. It’s up to instructors whether or not to use these tools, but consider using them to facilitate a conversation with students. In my own classes if I suspect academic misconduct, I usually start by asking them to explain, talk to me about what is happening before I make accusations. With these tools, there tends to be no hard evidence, just probabilities that something may have happened.  This is definitely an area we’re all still learning about.
Guest: I was just thinking that having a conversation with students about why they are turning to the tool in the first place might prevent misconduct.  Instead of sending them to an academic misconduct committee, we could have these conversations, like Carly mentioned. Making students aware of the limitations of the tool could also be helpful.
CS: Yes, I say that in our guidelines that I’m prioritizing conferences with students over immediate disciplinary action. I try to pre-empt anxiety students might feel around using these tools. Designing your assignments in a way that reduces anxiety is also helpful. For example, I tend to design assignments that build on one another throughout the semester in smaller bits, rather than one giant chunk all at once.  

Q: Is there any discussion around combining AI with teaching, such as generating personalized explanations of a topic? Students will have different levels of expertise and comfort with different topics.
ST: We’re trying to do this, to create a teaching aid for the future. We’re planning to use it to create assessment items.  

Amy Brusini, Senior Instructional Designer
Center for Teaching Excellence and Innovation
 

Image Source: Pixabay, Unsplash